Tìm các số nguyên x và y sao cho:
a) \(4x^2+3y^2-4xy+12x=7y-8\)
b)\(2x^2+y^2+xy=2\left(x+y\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(T=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\left(\frac{\sqrt{x}+1}{\sqrt{x-1}}+\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
\(\Rightarrow T=\frac{x-1}{\sqrt{x}}\left(\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x-1}\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x+1}\right)}\right)\)
\(\Rightarrow T=\frac{x-1}{\sqrt{x}}.\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1}{x-1}\)
\(\Rightarrow T=\frac{x-1}{\sqrt{x}}.\frac{2x+2}{x-1}\)
\(\Rightarrow T=\frac{2x+2}{\sqrt{x}}\)
\(T=8\Leftrightarrow\frac{2x+2}{\sqrt{x}}=8\)
\(\Leftrightarrow x+1=4\sqrt{x}\)
\(\Leftrightarrow x^2+2x+1=8x\)
\(\Leftrightarrow x^2-6x+1=0\)
\(\Delta=\left(-6\right)^2-4.1.1=36-4=32,\sqrt{\Delta}=\sqrt{32}\)
Vậy pt có 2 nghiệm phân biệt x1; x2
\(x_1=\frac{6+\sqrt{32}}{2}=3+\sqrt{8}\);\(x_2=\frac{6-\sqrt{32}}{2}=3-\sqrt{8}\)
\(M=\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2-2x}}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2-2x}}\left(x< 0;x\ge2\right)\)
\(=\frac{\left(x+\sqrt{x^2-2x}\right)\left(x+\sqrt{x^2-2x}\right)}{x^2-\sqrt{x^2-2x}^2}-\frac{\left(x-\sqrt{x^2-2x}\right)\left(x-\sqrt{x^2-2x}\right)}{x^2-\sqrt{x^2-2x}^2}\)
\(=\frac{x^2+x\sqrt{x^2-2x}+x\sqrt{x^2-2x}+x^2-2x}{x^2-x^2-2x}-\frac{x^2-x\sqrt{x^2-2x}-x\sqrt{x^2-2x}+x^2-2x}{x^2-x^2-2x}\)
\(=\frac{2x^2+2x\sqrt{x^2-2x}-2x}{-2x}-\frac{2x^2-2\sqrt{x^2-2x}-2x}{-2x}\)
\(=\frac{2x^2+2x\sqrt{x^2-2x}-2x-2x^2+2x\sqrt{x^2-2x}+2x}{-2x}\)
\(=\frac{4x\sqrt{x^2-2x}}{-2x}=-2x\sqrt{x^2-2x}\)
Chỉ làm thử thôi nhé-.-
\(B=\left(\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+2+4\sqrt{x-2}}\right):\sqrt{\frac{4}{x^2}-\frac{4}{x}+1}\left(đk:x\ge2\right)\)
\(=\left(\sqrt{x-2-2\sqrt{x-2}.2+2^2}+\sqrt{x-2+2\sqrt{x-2}.2+2^2}\right):\sqrt{\frac{4}{x^2}-\frac{4x}{x^2}+\frac{x^2}{x^2}}\)
\(=[\left(\sqrt{\left(\sqrt{x-2}-2\right)^2}+\sqrt{\left(\sqrt{x-2}+2\right)^2}\right):\sqrt{\frac{4-4x+x^2}{x^2}}\)
\(=\left(|\sqrt{x-2}-2|+|\sqrt{x-2}+2|\right):\sqrt{\frac{\left(2-x\right)^2}{x^2}}\)
\(=\left(\sqrt{x-2}-2+\sqrt{x-2}+2\right).\frac{x}{2-x}\)
\(=2\sqrt{x-2}.\frac{x}{2-x}=\frac{2x\sqrt{x-2}}{2-x}\)
\(B=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\cdot\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\)
\(\Leftrightarrow B=\frac{1}{\sqrt{x^2}}+\frac{2}{\sqrt{xy}}+\frac{1}{\sqrt{y^2}}\)
\(\Leftrightarrow B=\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)^2\)
\(B=\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\)
\(=\frac{\sqrt{y}+\sqrt{x}}{\sqrt{xy}}.\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\)
\(=\frac{2\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}+\frac{1}{x}+\frac{1}{y}\)
\(=\frac{2}{\sqrt{xy}}+\frac{1}{x}+\frac{1}{y}\)
\(=\frac{1}{\sqrt{x^2}}+\frac{2}{\sqrt{xy}}+\frac{1}{\sqrt{y^2}}\)
\(=\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)^2\)
\(a,E=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\left(Đk:x\ge0;x\ne\pm1\right)\)(Đề như này mới đúng!)
\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{-\left(3x+9\sqrt{x}-2\sqrt{x}-6\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2x-2\sqrt{x}+3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{7\sqrt{x}-2-5x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{5\sqrt{x}+2\sqrt{x}-2-5x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\left(5\sqrt{x}-5x\right)+\left(2\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-5\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)
Vậy...
\(b,\)Ta có:\(\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{-15+17-5\sqrt{x}}{\sqrt{x}+3}=\frac{\left(-15-5\sqrt{x}\right)+17}{\sqrt{x}+3}=\frac{-5\left(\sqrt{x}+3\right)+17}{\sqrt{x}+3}=-5+\frac{17}{\sqrt{x}+3}\)
Vì \(\sqrt{x}\ge0\forall x\Rightarrow\sqrt{x}+3\ge3\forall x\Rightarrow\frac{17}{\sqrt{x}+3}\le\frac{17}{3}\Rightarrow-5+\frac{17}{\sqrt{x}+3}\le\frac{2}{3}\Rightarrow E\le\frac{2}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
\(a,A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+..+\frac{1}{\sqrt{99}+\sqrt{100}}\)
\(=\frac{\sqrt{1}-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+...+\frac{\sqrt{99}-\sqrt{100}}{99-100}\)
\(=\frac{1-\sqrt{2}+\sqrt{2}-\sqrt{3}+...+\sqrt{99}-\sqrt{100}}{-1}\)
\(=\frac{1-\sqrt{100}}{-1}=9\)
\(b,B=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+..+\frac{1}{\sqrt{99}}\)
\(=\frac{2}{\sqrt{1}+\sqrt{1}}+\frac{2}{\sqrt{2}+\sqrt{2}}+\frac{2}{\sqrt{3}+\sqrt{3}}+...+\frac{2}{\sqrt{99}+\sqrt{99}}>\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{99}+\sqrt{100}}\)\(\Rightarrow B>2\left(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+..+\frac{1}{\sqrt{99}+\sqrt{100}}\right)\)
\(\Rightarrow B>2\left(\frac{\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+...+\sqrt{99}-\sqrt{100}}{-1}\right)\)
\(\Rightarrow B>2\left(\frac{1-\sqrt{100}}{-1}\right)\)
\(\Rightarrow B>2.9=18\left(ĐPCM\right)\)