Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{15}{21}=\dfrac{x}{-7}\)
=>\(\dfrac{x}{-7}=\dfrac{5}{7}\)
=>\(x=-5\)
b: \(\dfrac{5}{x}=\dfrac{15}{-20}\)
=>\(x=\dfrac{5\cdot\left(-20\right)}{15}=\dfrac{-100}{15}=-\dfrac{20}{3}\)
c: \(\dfrac{5}{3}=\dfrac{x}{9}\)
=>\(x=5\cdot\dfrac{9}{3}=5\cdot3=15\)
d: \(3x-\dfrac{7}{8}=\dfrac{5}{2}\)
=>\(3x=\dfrac{5}{2}+\dfrac{7}{8}=\dfrac{20+7}{8}=\dfrac{27}{8}\)
=>\(x=\dfrac{27}{8}:3=\dfrac{9}{8}\)
\(\dfrac{6}{5}x=\dfrac{9}{2}y=\dfrac{18}{7}z\)
=>\(\dfrac{x}{\dfrac{5}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{7}{18}}\)
Đặt \(\dfrac{x}{\dfrac{5}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{7}{18}}=k\)
=>\(x=\dfrac{5}{6}k;y=\dfrac{2}{9}k;z=\dfrac{7}{18}k\)
\(2x^2+3y^2-z^2=4\)
=>\(2\cdot\left(\dfrac{5}{6}k\right)^2+3\cdot\left(\dfrac{2}{9}k\right)^2-\left(\dfrac{7}{18}k\right)^2=4\)
=>\(\dfrac{50}{36}k^2+\dfrac{4}{27}k^2-\dfrac{49}{324}k^2=4\)
=>\(k^2=\dfrac{1296}{449}\)
=>\(k=\pm\dfrac{36}{\sqrt{449}}\)
TH1: \(k=\dfrac{36}{\sqrt{449}}\)
=>\(x=\dfrac{5}{6}\cdot\dfrac{36}{\sqrt{449}}=\dfrac{30}{\sqrt{449}};y=\dfrac{2}{9}\cdot\dfrac{36}{\sqrt{449}}=\dfrac{8}{\sqrt{449}};z=\dfrac{7}{18}\cdot\dfrac{36}{\sqrt{449}}=\dfrac{14}{\sqrt{449}}\)
TH2: \(k=-\dfrac{36}{\sqrt{449}}\)
=>\(x=\dfrac{5}{6}\cdot\dfrac{-36}{\sqrt{449}}=\dfrac{-30}{\sqrt{449}};y=\dfrac{2}{9}\cdot\dfrac{-36}{\sqrt{449}}=\dfrac{-8}{\sqrt{449}};z=\dfrac{7}{18}\cdot\dfrac{-36}{\sqrt{449}}=\dfrac{-14}{\sqrt{449}}\)
\(\dfrac{x}{y}=\dfrac{5}{3}\)
=>\(\dfrac{x}{5}=\dfrac{y}{3}\)
mà x+2y=4,4
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x+2y}{5+2\cdot3}=\dfrac{4.4}{11}=0,4\)
=>\(x=0,4\cdot5=2;y=0,4\cdot3=1,2\)
`#3107.101107`
\(\dfrac{x}{y}=\dfrac{5}{3}\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\Rightarrow\dfrac{x}{5}=\dfrac{2y}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{2y}{6}=\dfrac{x+2y}{5+6}=\dfrac{4,4}{11}=0,4\)
\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}=0,4\)
\(\Rightarrow x=0,4\cdot5=2\) `;` \(y=0,4\cdot3=1,2\)
Vậy, `x = 2; y = 1,2.`
2x=3y
=>\(\dfrac{x}{3}=\dfrac{y}{2}\)
=>\(\dfrac{x}{21}=\dfrac{y}{14}\left(1\right)\)
5y=7z
=>\(\dfrac{y}{7}=\dfrac{z}{5}\)
=>\(\dfrac{y}{14}=\dfrac{z}{10}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)
Đặt \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=k\)
=>x=21k; y=14k; z=10k
3x-2y+5z=-30
=>\(3\cdot21k-2\cdot14k+5\cdot10k=-30\)
=>85k=-30
=>\(k=-\dfrac{30}{85}=-\dfrac{6}{17}\)
=>\(x=21\cdot\dfrac{-6}{17}=\dfrac{-126}{17};y=14\cdot\dfrac{-6}{17}=-\dfrac{84}{17};z=10\cdot\dfrac{-6}{17}=-\dfrac{60}{17}\)
\(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\)
\(5y=7z\Rightarrow\dfrac{y}{7}=\dfrac{z}{5}\Rightarrow\dfrac{y}{14}=\dfrac{z}{10}\)
\(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x}{63}=\dfrac{2y}{28}=\dfrac{5z}{50}=\dfrac{3x-2y+5z}{63-28+50}=\dfrac{-30}{85}\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{30}{85}.21=-\dfrac{126}{17}\\y=-\dfrac{30}{85}.14=-\dfrac{84}{17}\\z=-\dfrac{30}{85}.10=-\dfrac{60}{17}\end{matrix}\right.\)
Em có ghi nhầm đề đâu ko mà kết quả xấu quá
a.
Ta có: \(\widehat{BDE}+\widehat{EDF}+\widehat{D_1}=180^0\)
\(\Rightarrow\widehat{BDE}+90^0+\widehat{D_1}=180^0\)
\(\Rightarrow\widehat{BDE}+\widehat{D_1}=90^0\)
Mà \(\widehat{D_1}=\widehat{D_2}\Rightarrow\widehat{BDE}+\widehat{D_2}=90^0\)
Lại có \(\widehat{HDE}+\widehat{D_2}=\widehat{EDF}=90^0\)
\(\Rightarrow\widehat{BDE}=\widehat{HDE}\)
\(\Rightarrow DE\) là phân giác của \(\widehat{BDH}\)
b.
Xét hai tam giác vuông BDE và HDE có:
\(\left\{{}\begin{matrix}DE-chung\\\widehat{BDE}=\widehat{HDE}\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta_{\perp}BDE=\Delta_{\perp}HDE\left(ch-gn\right)\)
\(\Rightarrow BE=HE\)
Tương tự, xét 2 tam giác vuông HDF và ADF có:
\(\left\{{}\begin{matrix}DF-chung\\\widehat{D_2}=\widehat{D_1}\left(gt\right)\end{matrix}\right.\) \(\Rightarrow\Delta_{\perp}HDF=\Delta_{\perp}ADF\left(ch-gn\right)\)
\(\Rightarrow AF=HF\)
\(\Rightarrow HE+HF=BE+AF\)
\(\Rightarrow EF=BE+AF\)
a.
Do \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\Rightarrow ad-bc< 0\)
Ta có:
\(\dfrac{a}{b}-\dfrac{a+c}{b+d}=\dfrac{a\left(b+d\right)-b\left(a+c\right)}{b\left(b+d\right)}=\dfrac{ab+ad-ab-bc}{b\left(b+d\right)}=\dfrac{ad-bc}{b\left(b+d\right)}< 0\)
\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\)
b.
\(A=\dfrac{a}{a+b+c-c}+\dfrac{b}{a+b+c-a}+\dfrac{c}{a+b+c-b}=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}\)
\(A>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}\)
\(\Rightarrow A>\dfrac{a+b+c}{a+b+c}\Rightarrow A>1\)
\(A< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow1< A< 2\)
\(\Rightarrow\) A nằm giữa 2 số nguyên liên tiếp nên A không phải là số nguyên