Cho đường thẳng y=4x (d)
Viết phương trình đường thẳng (d1) song song với đường thẳng (d) cắt trục Ox tại A,cắt trục Oy tại B và diện tích tam giác AOB bằng 8.
Bạn nào cmt đúng là mình sẽ tick ạ!Cảm ơn các bạn nhiều!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXD : \(\sqrt{\frac{2}{3}x-\frac{1}{5}}\ge0\)
\(\Leftrightarrow\frac{2}{3}x-\frac{1}{5}\ge0\)
\(\Leftrightarrow\frac{2}{3}x\ge\frac{1}{5}\\ \Leftrightarrow x\ge\frac{3}{10}\)
Để ý rằng a, b, c > 0 nên abc > 0, khi đó chia hai vế của bđt cho abc thì sẽ xuất hiện \(\frac{1}{a};\frac{1}{b};\frac{1}{c}\). Đặt ẩn phụ + biến đổi + Cô si cho 6 số thì bài toán đâu đến nổi khó ...
BĐT \(\Leftrightarrow\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge\frac{8}{abc}\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\). Bài toán trở thành:
Cho x, y, z > 0 thỏa mãn x + y + z = 3. Chứng minh:
\(\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge8xyz\)
Nhân hai vế của BĐT với 27, ta cần chứng minh:
\(\left(3x+3\right)\left(3y+3\right)\left(3z+3\right)\ge216xyz\)
\(\Leftrightarrow\left(x+x+x+x+y+z\right)\left(y+y+y+x+y+z\right)\left(z+z+z+x+y+z\right)\ge216xyz\)
Đơn giản chưa:v Cô si cho 6 số ở mỗi cái ngoặc là ra:D Cách này mà sai thì em chịu đấy nhé;) Tự c/m Cô si cho 6 số.
\(\left(\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}-1}\right)\left(1-\frac{x\sqrt{x}-x}{\sqrt{x}-1}\right)\)
\(=\frac{2\left(\sqrt{x}+1\right)}{x-1}.\left(-\frac{x\sqrt{x}-x}{\sqrt{x}-1}+1\right)\)
\(=\frac{2\left(\sqrt{x}+1\right)}{x-1}.\left(-x+1\right)\)
\(=\frac{2\left(\sqrt{x}+1\right)\left(1-x\right)}{x-1}\)
\(=\frac{2\left(\sqrt{x}+1\right)\left(1-x\right)}{-\left(-x+1\right)}\)
\(=-\frac{2\left(\sqrt{x}+1\right)\left(1-x\right)}{x+2}\)
\(=-2\left(\sqrt{x}+1\right)\)
Viết pt đg thẳng (d1) // (d) cắt Ox tại A, Oy tại B và S∆AOB = 8
Gọi (d2) có dạng y = ax + b và (d2) // (d) \(\Rightarrow y=4x+b\)
A có tọa độ = (a;0) \(\Rightarrow O_A=\left|a\right|=4\)
B có tọa độ = (b;0) \(\Rightarrow O_B=\left|b\right|\)
Lại có \(\frac{1}{2}\left|ab\right|=8\Rightarrow\frac{1}{2}.4.\left|b\right|=8\Rightarrow\orbr{\begin{cases}b=4\\b=-4\end{cases}}\)