Cho các số thực dương a,b,c thỏa mãn \(a^2+b^2+c^2=3\)
CMR \(\frac{ab}{c}+\frac{ca}{b}+\frac{bc}{a}\)lớn hơn hoặc bằng 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
2x^2+3xy-2y^2=7
=> 2x^2-xy+4xy-2y^2=7
=> x(2x-y)+2y(2x-y)=7
=> (2x-y)(x+2y)=7
Ta có: 2x-y, x+2y là nghiệm của 7
Nếu 2x-y=7, x+2y=1
=> 2(2x-y)+x+2y=15
=> 5x=15
=> x=3, y=-1 (TM)
Tương tự:
Nếu 2x-y= 1,x+2y= 7 => x=1,8 , y=2,6 (loại)
Nếu 2x-y=-1,x+2y=-7 => x=-1,8 , y=-2,6(loại)
Nếu 2x-y=-7, x+2y=-1=> x=-3, y=1(loại)
Vậy (x;y) là (3;-1);(-3;1)
a) \(\frac{2a-9}{2a-5}+\frac{3a}{3a-2}=2\)
<=> (2a - 9)(3a - 2) + 3a(2a - 5) = 2(2a - 5)(3a - 2)
<=> 6a2 - 4a - 27a + 16 + 6a2 - 15a = 12a2 - 8a - 30a + 20
<=> 12a2 - 44a + 16 = 12a2 - 38a + 20
<=> 12a2 - 44a + 16 - 12a2 = -38a + 20
<=> -44a + 16 = -36a + 20
<=> -44a + 16 + 36a = 20
<=> -8a + 16 = 20
<=> -8a = 20 - 16
<=> -8a = 4
<=> a = -4/8 = -1/2
b) nhân chéo và làm tương tự
a) \(\left(x-9\right)\left(x-7\right)+1\)
\(=x^2-16x+63+1\)
\(=x^2-16x+64\)
\(=\left(x-8\right)^2\)
b) \(x^3+2x^2-3x-6\)
\(=x^2\left(x+2\right)-3x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-3x\right)\)
\(=x\left(x+2\right)\left(x-3\right)\)
c) \(x^2-y^2+xz-yz\)
\(=x\left(x+z\right)-y\left(y+z\right)\)
\(=\left(x-y\right)\left(y+z\right)\)
d) \(x^3-x+3x^2y+y^3-y\)
botay:(