x +567 + x -67 = x +90
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2n-3}{n+1}=\dfrac{2\left(n+1\right)-5}{n+1}=2-\dfrac{5}{n+1}\)
Để \(\left(2n-3\right)⋮\left(n+1\right)\Rightarrow5⋮\left(n+1\right)\)
=> \(\left(n+1\right)=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{-6;-2;0;4\right\}\)
vì (x-7)(x+3)<0
=> (x-7) và (x+3) phải trái dấu
=> nếu x-7 < 0 thì x+3 >0
nếu x-7 >0 thì x+3<0
+ xét trường hợp 1
=>x-7<0 =>x<7
x+3>0 => x >-3
hay -3<x<7 ( thõa mãn)
+ xét trường hợp 2:
=> x-7>0 => x>7
x+3<0 = >x<-3
=> vô lí x ko thể lớn hơn 7 mà bé hơn -3
vậy -3<x<7 (bạn tự liệt kê)
Vì (x-7)(x+3)<0
(x-7) phải có dấu (x+3)
Nếu x-7<0 thì x+3>0
- Xét trường hợp x-7<0 thì x+3>0
x-7<0 vậy x<7
x+3>0 vẫy>-3
-3<x<7
\(xy-5y+5x-24=12\\ =>y\left(x-5\right)+5\left(x-5\right)+1=12\\ =>\left(x-5\right)\left(y+5\right)=11\)
Bổ sung đề : x,y nguyên
=> x-5,y+5 thuộc Z
Ta có : 11=1.11=(-1).(-11)
Đến đây bạn lập bảng giá trị ra rồi tìm x,y.
xy-5y+5x-24=12
y(x-5)+5(x-5)+1=12
(x-5)(y+5)=11
x,y nguyên
x-5, y+5 thuộc Z
mình chỉ biết làm tới đây thui
2346; 2364; 2436; 2463;
3246; 3264; 3426; 3462; 3624; 3642
4236; 4263; 4326; 4362; 4623; 4632
6234; 6243; 6324; 6342; 6423; 6432
Tất cả các số có ba chữ số khác nhau được lập từ bốn chữ số 0; 2; 4; 6 là:
204; 206; 240; 246; 260; 264
402; 406; 420; 426; 460; 462;
602; 604; 620; 624; 640; 642
A = 32010 + 52010 cmr A ⋮ 13
A = 32010 + 52010 = (33)670 + (54)502.52 = 27670 + 625502.25
27 \(\equiv\) 1 (mod 13) ⇒ 27670 \(\equiv\) 1670 (mod 13) ⇒ 27670 \(\equiv\)1 (mod 13)
625 \(\equiv\) 1(mod 13) ⇒625502 \(\equiv\) 1502(mod 13) ⇒ 625502\(\equiv\) 1(mod 13)
25 \(\equiv\) -1 (mod 13)
625502 \(\equiv\) 1 (mod 13)
Nhân vế với vế ta được: 625502.25 \(\equiv\) -1 (mod 13)
Mặt khác ta có: 27670 \(\equiv\) 1 (mod 13)
Cộng vế với vế ta được:27670 + 625502.25 \(\equiv\) 1 -1 (mod 13 )
27670 + 625502.25 \(\equiv\) 0 (mod 13)
⇒ 27670 + 625502.25 ⋮ 13
⇒ A = 32010 + 52010 = 27670 + 625502.25 ⋮ 13 (đpcm)
Giải bằng phương pháp đánh giá em nhé.
+ Nếu p = 2 ta có:
2 + 8 = 10 (loại)
+ Nếu p = 3 ta có:
3 + 8 = 11 (nhận)
4.3 + 1 = 13 (nhận)
+ Nếu p = 3\(k\) + 1 ta có:
p + 8 = 3\(k\) + 1 + 8 = 3\(k\) + 9 = 3(\(k+3\)) là hợp số (loại)
+ nếu p = 3\(k\) + 2 ta có:
4p + 1 = 4(3\(k\) + 2) + 1 = 12\(k\) + 9 = 3\(\left(4k+3\right)\) là hợp số loại
Vậy p = 3 là giá trị thỏa mãn đề bài
Kết luận: số nguyên tố p sao cho p + 8 và 4p + 1 đều là các số nguyên tố đó là 3
Hôm nay, olm.vn sẽ hướng dẫn em cách làm dạng tính nhanh phân số mà tử số bằng hiệu hai thừa số dưới mẫu, thừa số thứ hai của mẫu này là thừa số thứ nhất của mẫu kia em nhé.
Bước 1: Đưa các phân số có trong tổng cần tính thành các phân số có tử số bằng hiệu hai thừa số dưới mẫu
Bước 2: Tách các phân số ở bước 1 thành hiệu hai phân số
Bước 3: Triệt tiêu các phân số giống nhau, thu gọn ta được tổng cần tìm
S = \(\dfrac{1}{3}\) + \(\dfrac{1}{33}\) + \(\dfrac{1}{88}\) +...+ \(\dfrac{1}{4368}\)
S\(\times\) \(\dfrac{5}{2}\)= \(\dfrac{5}{2}\)\(\times\)(\(\dfrac{1}{3}\)+\(\dfrac{1}{33}\)+\(\dfrac{1}{88}\)+...+\(\dfrac{1}{4368}\))
S\(\times\)\(\dfrac{5}{2}\) = \(\dfrac{5}{6}+\dfrac{5}{66}+\dfrac{5}{176}+...+\dfrac{5}{8736}\)
S \(\times\)\(\dfrac{5}{2}\) = \(\dfrac{5}{1.6}\) + \(\dfrac{5}{6.11}\) + \(\dfrac{5}{11.16}\)+...+\(\dfrac{5}{91.96}\)
S\(\times\) \(\dfrac{5}{2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{11}\)+ \(\dfrac{1}{11}\) - \(\dfrac{1}{16}\)+...+ \(\dfrac{1}{91}\) - \(\dfrac{1}{96}\)
S \(\times\)\(\dfrac{5}{2}\) = 1 - \(\dfrac{1}{96}\)
S \(\times\) \(\dfrac{5}{2}\) = \(\dfrac{95}{96}\)
S = \(\dfrac{95}{96}\): \(\dfrac{5}{2}\)
S = \(\dfrac{19}{48}\)
\(x+567+x-67=x+90\\ \Rightarrow\left(x+x\right)+\left(567-67\right)=x+90\\ \Rightarrow2x+500-x-90=0\\ \Rightarrow x+410=0\\ \Rightarrow x=-410\)
`x+567 +x-67=x+90`
`=>(x+x)+(567-67)=x+90`
`=>2x+500=x+90`
`=>2x-x=90-500`
`=>x= - 410`
Vậy `x=-410`