Cho tam giác ABC có các đường cao AD,BE,CF cắt nhau tại H.Gọi K là giao điểm AH và EF,N là trung điểm AH.Đường thẳng qua A song song với BN cắt BC tại M.Gọi P là giao điểm MK với AB
Chứng minh:
\(\frac{HK}{HD}=\frac{NH}{ND}\)
\(PD,MH,KB\) đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{x^3-x^2-x+1}=\frac{3}{1-x^2}-\frac{1}{x+1}\)
<=> \(\frac{2}{\left(x^2-1\right)\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}+\frac{1}{x+1}=0\)
<=> \(\frac{2}{\left(x-1\right)^2\left(x+1\right)}+\frac{3\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}+\frac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}=0\)
<=> \(2+3x-3+x^2-2x+1=0\)
<=> x2 + x = 0
<=> x(x + 1) = 0
<=> \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy S = {0; -1}
tôi bị mất ních olm
https://olm.vn/thanhvien/khoi198a2006
ai lấy lại hộ zới
(x^2 + 4x + 3)(x^2 + 6x + 8) = 24
<=> x^4 + 10x^3 + 35x^2 + 50x + 24 = 24
<=> x^4 + 10x^3 + 35x^2 + 50x = 0
<=> x(x + 5)(x^2 + 5x + 10) = 0
<=> x = 0 hoặc x + 5 = 0 hoặc x^2 + 5x + 10 khác 0
<=> x = 0 hoặc x = -5
(x + 1)(x + 2)(x + 4)(x + 5) = 40
<=> (x + 1)(x + 5)(x + 2)(x + 4) - 40 = 0
<=> (x2 + 6x + 5)(x2 + 6x + 8) - 40 = 0
Đặt x2 + 6x + 5 = a <=> a(a + 3) - 40 = 0
<=> a2 + 3a - 40 = 0
<=> a2 + 8a - 5a - 40 = 0
<=> (a + 8)(a - 5) = 0
<=> \(\orbr{\begin{cases}a+8=0\\a-5=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x^2+6x+5+8=0\\x^2+6x+5-5=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x^2+6x+9+4=0\\x^2+6x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+3\right)^2+4=0\left(vn\right)\\x\left(x+6\right)=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x+6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=-6\end{cases}}\) Vậy S = {0; -6}
Công thức là ra thôi :v
\(Sabcd=\frac{1}{2}.AC.BD=\frac{1}{2}.12.20=120\left(cm\right)\)
~~
\(1+\frac{2x}{x+4}+\frac{27}{2x^2+7x-4}=\frac{6}{2x-1}\left(x\ne-4;x\ne\frac{1}{2}\right)\)
\(\Leftrightarrow1+\frac{2x}{x+4}+\frac{27}{\left(x+4\right)\left(2x-1\right)}-\frac{6}{2x-1}=0\)
\(\Leftrightarrow\frac{2x^2+7x-4}{\left(x+4\right)\left(2x-1\right)}+\frac{2x\left(2x-1\right)}{\left(x+4\right)\left(2x-1\right)}+\frac{27}{\left(x+4\right)\left(2x-1\right)}-\frac{6\left(x+4\right)}{\left(x+4\right)\left(2x-1\right)}=0\)
\(\Leftrightarrow\frac{2x^2+7x-4}{\left(x+4\right)\left(2x-1\right)}+\frac{4x^2-2x}{\left(x+4\right)\left(2x-1\right)}+\frac{27}{\left(x+4\right)\left(2x-1\right)}-\frac{6x+24}{\left(x+4\right)\left(2x-1\right)}=0\)
\(\Leftrightarrow\frac{2x^2+7x-4+4x^2-2x+27-6x-24}{\left(x+4\right)\left(2x-1\right)}=0\)
\(\Leftrightarrow\frac{6x^2-x-1}{\left(x+4\right)\left(2x-1\right)}=0\)
\(\Leftrightarrow6x^2-x-1=0\)
\(\Leftrightarrow6x^2+2x-3x-1=0\)
<=> 2x(3x+1)-(3x+1)=0
<=> (3x+1)(2x-1)=0
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\left(tm\right)\\x=\frac{1}{2}\left(ktm\right)\end{cases}}}\)
Vậy pt có nghiệm \(x=\frac{-1}{3}\)
\(ĐKXĐ:x\ne-4;x\ne\frac{1}{2}\)
\(1+\frac{2x}{x+4}+\frac{27}{2x^2+7x-4}=\frac{6}{2x-1}\)
\(\Leftrightarrow\frac{\left(x+4\right)\left(2x-1\right)}{\left(x+4\right)\left(2x-1\right)}+\frac{2x\left(2x-1\right)}{\left(x+4\right)\left(2x-1\right)}+\frac{27}{\left(x+4\right)\left(2x-1\right)}-\frac{6\left(x+4\right)}{\left(x+4\right)\left(2x-1\right)}=0\)
\(\Leftrightarrow\frac{2x^2+7x-4+4x^2-2x+27-6x-24}{\left(x+4\right)\left(2x-1\right)}=0\)
\(\Leftrightarrow6x^2-x-1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow x=-\frac{1}{3}\)
Ta có
\(\Delta A'B'C'~\Delta A"B"C"\)theo tỉ số đồng dạng \(k_1\Rightarrow A'B'=k_1A"B"\)
\(\Delta A"B"C"~\Delta A'B'C\)theo tỉ số \(k_2=>A"B"=k_2A"B"=>AB=\frac{A"B"}{k_2}\)
từ đó suy ra
\(\frac{A'B'}{AB}=\frac{k_1A"B"}{\frac{A"B"}{k_2}}=k_1k_2\Leftrightarrow\Delta A'B'C~\Delta ABC\)theo tỉ số \(k_1k_2\)
a)
Ta có: \(\widehat{NKE}=\widehat{KHE}+\widehat{E_1}\)(góc ngoài \(\Delta\)KHE)
\(\Delta\)AHE vuông tại E có: N là trung điểm AH => \(NE=NH=\frac{1}{2}AH\)
Tam giác NEH cân tại N => \(\widehat{NEH}=\widehat{NHE}=\widehat{KHE}\)
Mà \(\widehat{NKB}=\widehat{KHE}+\widehat{E_1}\)
\(\widehat{NED}=\widehat{NEH}+\widehat{E_2}\)
\(\Rightarrow\widehat{NEK}=\widehat{NED}\)
\(\Rightarrow\Delta\)NEK đồng dạng \(\Delta NED\)
=> \(\frac{NE}{ND}=\frac{KE}{ED}\)
Do E là phân giác \(\widehat{DEF}\)=> \(\frac{HK}{HD}=\frac{NH}{ND}\)(đpcm)
b) Định lý Ceva PD,MH,KB đồng quy khi \(\frac{MB}{BD}\cdot\frac{DH}{HK}\cdot\frac{KP}{PM}=1\)
By: Đỗ Quang Thiều (refundzed)
Câu b) chi tiết hơn và sử dụng kiến thức lớp 9
Từ cái tỉ số ở câu đầu
Ta CM đc: \(MK//BH\)
\(\Leftrightarrow\widehat{FPK}=\widehat{MPB}=\widehat{ABE}=\widehat{ACF}=\widehat{FDH}\)
Nên PFKD là tứ giác nội tiếp
Suy ra: \(\widehat{PDK}=\widehat{AFE}=\widehat{AHE}=\widehat{BHD}=\widehat{PKD}\)
Cho nên tam giác PKD cân tại P
=> PK=PD
Từ đây hiển nhiên PM=PK hay \(\frac{PK}{PM}=1\)
Xét tích: \(\frac{MB}{BD}\cdot\frac{DH}{HK}\cdot\frac{KP}{PM}=\frac{HK}{DH}\cdot\frac{DH}{HK}\cdot\frac{KP}{PM}=1\)
Theo Ceva đảo thì đồng quy