K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

\(T=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)  ; x + y + z = 1

\(\Rightarrow T=\frac{x+y+z}{16x}+\frac{x+y+z}{4y}+\frac{x+y+z}{z}\)

\(=\frac{1}{16}+\frac{y}{16x}+\frac{z}{16x}+\frac{x}{4y}+\frac{1}{4}+\frac{z}{4y}+\frac{x}{z}+\frac{y}{z}+1\)

\(=\left(\frac{1}{16}+\frac{1}{4}+1\right)+\left(\frac{y}{16x}+\frac{x}{4y}\right)+\left(\frac{z}{16x}+\frac{x}{z}\right)+\left(\frac{z}{4y}+\frac{y}{z}\right)\)                    (1)

\(x;y;z>0\Rightarrow\frac{y}{16x};\frac{x}{4y};\frac{z}{16x};\frac{x}{z};\frac{z}{4y};\frac{y}{z}>0\)

áp dụng bđt cô si : 

\(\frac{y}{16x}+\frac{x}{4y}\ge2\sqrt{\frac{y}{16x}\cdot\frac{x}{4y}}=\frac{1}{4}\)                             (2)

\(\frac{z}{16x}+\frac{x}{z}\ge2\sqrt{\frac{z}{16x}\cdot\frac{x}{z}}=\frac{1}{2}\)                                 (3)

\(\frac{x}{4y}+\frac{y}{z}\ge2\sqrt{\frac{z}{4y}\cdot\frac{y}{z}}=1\)                                        (4)

(1)(2)(3)(4) \(\Rightarrow T\ge\frac{1}{16}+\frac{1}{4}+1+\frac{1}{4}+\frac{1}{2}+1\)

\(\Rightarrow T\ge\frac{49}{16}\)

dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{y}{16x}=\frac{x}{4y}\\\frac{z}{16x}=\frac{x}{z}\\\frac{z}{4y}=\frac{y}{z}\end{cases}}\Leftrightarrow\hept{\begin{cases}4y^2=16x^2\\z^2=16x^2\\z^2=4y^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2x\\z=4x\\z=2y\end{cases}}\) có x+y+z = 1

=> x + 2x + 4x = 1

=> x = 1/7

xong tìm ra y = 2/7 và z = 4/7

25 tháng 3 2020

(x+1)(2x-3)=(2x-1)(x+5)  

<=> 2x^2 - 3x + 2x - 3 = 2x^2 + 10x - x - 5

<=> -x - 3 = 9x - 5

<=> 9x + x = -3 + 5

<=> 10x = 2

<=> x = 1/5 

25 tháng 3 2020

Aii làm nhanhh giúp mình với mình cần gấp lắm nèk -.-

25 tháng 3 2020

C = 2x^2 + y^2 + 2xy - 4x - 2016

C = (x^2 + 2xy + y^2) + (x^2 - 4x + 4) - 2020

C = (x + y)^2 + (x - 2)^2 - 2020

(x+y)^2 > 0; (x - 2)^2 > 0

C > -2020

dấu "=" xảy ra khi x + y = 0 và x - 2 = 0

<=> x = 2; y = -2

25 tháng 3 2020

\(x^2+2\ge2\Rightarrow\frac{6}{x^2+2}\le\frac{6}{2}=3\)

Vay Max D=3, dau = xay ra khi x=0

25 tháng 3 2020

ko biết bấm máy tính à

25 tháng 3 2020

134562836 + 372639= 134935475

           #rin

.....

25 tháng 3 2020

\(3\sqrt{a-1}+4\sqrt{5-a}\le10\)(1)

<=> \(9a-9+80-16a+24\sqrt{-a^2+6a-5}\le100\)

<=> \(24\sqrt{-a^2+6a-5}\le29+7a\)

<=> \(-576a^2+3456a-2880\le841+406a+49a^2\)

<=> \(625a^2-3050a+3721\ge0\)

<=> \(\left(25a-61\right)^2\ge0\)đúng với mọi  \(1\le a\le5\)

Vậy (1) đúng với mọi a sao cho \(1\le a\le5\)

Dấu "=" xảy ra khi và chỉ khi a = 61/25

25 tháng 3 2020

Với \(1\le a\le5\)

Áp dụng BĐT Cauchy ta có:

\(\left(3\sqrt{a-1}+4\sqrt{5-a}\right)^2\le\left(3^2+4^2\right)\left(a-1+5-a\right)=4\cdot25=100\)

\(\Rightarrow3\sqrt{a-1}+4\sqrt{5-a}\le10\)

=> đpcm