cho a>0 ,b>0 và 9a2 -b2 =0 . tính giá tị của biểu thức :
A= \(9a^3-\frac{1}{3}b^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H M O G N
Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.
M là trung điểm của BC và HN nên BNCH là hình bình hành
\(\Rightarrow NC//BH\)
Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O )
Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)
M là trung điểm BC nên OM \(\perp\)BC
Xét \(\Delta AHG\)và \(\Delta OGM\)có :
\(\widehat{HAG}=\widehat{GMO}\); \(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)
\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng
A B C D M N P Q E F T S
gọi E,F,T lần lượt là trung điểm của AB,CD,BD
Đường thẳng ME cắt NF tại S
Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )
Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)
Tương tự , \(NF\perp CD;\)\(TQ//CD\)
\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )
\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)
Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )
Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)
Giả sử phương trình trên phân tích thành nhân tử được thành \(\left(x-a\right)\left(x-b\right)\)
Khi đó a,b là nghiệm của đa thức trên,ta chứng minh đa thức trên vô nghiệm là ok
\(x^2-2x+3=x^2-2x+1+2=\left(x-1\right)^2+2>0\)
Vậy không tồn tại nghiệm thực của đa thức trên khi đó a,b không tồn tại
Vậy đa thức trên không thể PTNĐTNT
9a2 - b2 = 0
=> (3a)2 - b2 = 0
=> (3a - b)(3a + b) = 0
=> 3a - b = 0 hoặc 3a + b = 0
Mà a>0, b>0 => 3a - b =0 => 3a = b
Thay vào A, ta được:
A= 9a3 - 1/3(3a)3
A= 9a3 - 1/3.33a3
A= 9a3 - 9a3 => A=0