So sánh
2 và \(\sqrt{2}+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{x+1}=\sqrt{2-x}\)
\(\Rightarrow x+1=2-x\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\frac{1}{2}\)
a) \(ĐKXĐ:-1\le x\le2\)
Bình phương 2 vế ta có:
\(x+1=2-x\)\(\Leftrightarrow2x=1\)\(\Leftrightarrow x=\frac{1}{2}\)( đpcm )
Vậy \(x=\frac{1}{2}\)
b) \(ĐKXĐ:x\ge1\)
\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}+\sqrt{x-1}=16\)
\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)
\(\Leftrightarrow2\sqrt{x-1}=16\)\(\Leftrightarrow\sqrt{x-1}=8\)
\(\Leftrightarrow x-1=64\)\(\Leftrightarrow x=65\)( thỏa mãn ĐKXĐ )
Vậy \(x=65\)
c) \(ĐKXĐ:x\ge1\)
\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)
\(\Leftrightarrow\sqrt{16\left(x-1\right)}-\sqrt{9\left(x-1\right)}+\sqrt{4\left(x-1\right)}+\sqrt{x-1}=8\)
\(\Leftrightarrow4\sqrt{x-1}-3\sqrt{x-1}+2\sqrt{x-1}+\sqrt{x-1}=8\)
\(\Leftrightarrow4\sqrt{x-1}=8\)\(\Leftrightarrow\sqrt{x-1}=2\)
\(\Leftrightarrow x-1=4\)\(\Leftrightarrow x=5\)( thỏa mãn ĐKXĐ )
Vậy \(x=5\)
a) \(\frac{2}{4-3\sqrt{2}}-\frac{2}{4+3\sqrt{2}}\)
\(=\frac{2\left(4+3\sqrt{2}\right)}{\left(4-3\sqrt{2}\right)\left(4+3\sqrt{2}\right)}-\frac{2\left(4-3\sqrt{2}\right)}{\left(4-3\sqrt{2}\right)\left(4+3\sqrt{2}\right)}\)
\(=\frac{2\left(4+3\sqrt{2}\right)-2\left(4-3\sqrt{2}\right)}{\left(4-3\sqrt{2}\right)\left(4+3\sqrt{2}\right)}\)
\(=\frac{12\sqrt{2}}{-2}\)
\(=-6\sqrt{2}\)
b) \(\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)
\(=\frac{\left(\sqrt{7}+\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}-\frac{\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}\)
\(=\frac{\left(\sqrt{7}+\sqrt{5}\right)^2-\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}\)
\(=\frac{4\sqrt{35}}{2}\)
\(=2\sqrt{35}\)
\(đkxđ\Leftrightarrow x\ge\sqrt{x^2-4x+4}\)\(\Rightarrow x\ge|x-2|\Rightarrow x\ge0\)
\(A=\sqrt{x-\sqrt{x^2-4x+4}}.\)
\(=\sqrt{x-\sqrt{\left(x-2\right)^2}}\)
\(=\sqrt{x-|x-2|}=0\)
Nếu \(x\ge2\Rightarrow A=\sqrt{x-\left(x-2\right)}=\sqrt{x-x+2}=\sqrt{2}\)
Nếu \(0\le x< 2\Rightarrow A=\sqrt{x-\left(2-x\right)}=\sqrt{2x-2}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=\frac{1}{5}\left(1\right)\\8x^2+6x+6xy+2y=\frac{114}{25}\end{cases}}\)
\(\Leftrightarrow9x^2+6x+6xy+2y+y^2+1=\frac{114}{25}+\frac{1}{5}+1\)
\(\Leftrightarrow\left(3x\right)^2+6x\left(y+1\right)+\left(y+1\right)^2=\frac{144}{25}\)\(\Leftrightarrow\left(3x+y+1\right)^2=\frac{144}{25}\)
=>\(\hept{\begin{cases}3x+y+1=\frac{12}{5}\\3x+y+1=-\frac{12}{5}\end{cases}}\)\(\hept{\begin{cases}3x+y=\frac{7}{5}\\3x+y=-\frac{17}{5}\end{cases}}\)\(\hept{\begin{cases}y=\frac{7}{5}-3x\left(2\right)\\y=-\frac{17}{5}-3x\left(3\right)\end{cases}}\)
Thay (2) vào (1) ta có:\(x^2+\left(\frac{7}{5}-3x\right)^2=\frac{1}{5}\)\(\Rightarrow x^2+\frac{49}{25}-8,4x+9x^2-\frac{1}{5}=0\)\(\Rightarrow\hept{\begin{cases}x=\frac{11}{25}\\x=0,4\end{cases}\Rightarrow\hept{\begin{cases}y=5,68\\y=6,6\end{cases}}}\)
Thay (3) vào (1) ta giải được (LƯỜI GIẢI) sorry nha :))
P/s:Chỉ khó lúc biến đổi đầu thôi, còn lại bạn tự giải nha
Ai cha!!! Giải y sai rồi lúc cuối sửa lại dùm mình:: \(\hept{\begin{cases}y=\frac{2}{25}\\y=0,4\end{cases}}\)
Vậy đó, mình thích biến đổi hơn, Giải mấy cái dễ thì hay sai linh tinh lắm
2=căn4
căn 4>căn 3
=>2> căn(2+1)
2 và \(\sqrt{2}+1\)
\(\Rightarrow2...\sqrt{2}+1\)
\(\Rightarrow2=\sqrt{1}+1...\sqrt{2}+1\)
\(\Rightarrow\sqrt{1}+1< \sqrt{2}+1\)
\(\Rightarrow2< \sqrt{2}+1\)