cho tam giac abc nhon noi tiep duong tron O, hai duong cao BD va CE cua tam giac ABC cat nhau tai H. Ve DK vuong goc voi AB (K thuoc AB), goi F la trung diem cua ED, tia BF cat (O) tai I.
a, CM: BEDC noi tiep
b, CM: BK.BA=BF.BI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
\(=\dfrac{2x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
\(=\dfrac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{1}{\sqrt{x}-1}\)
\(\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\dfrac{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}{1+\sqrt{x}}-\sqrt{x}\)
\(=1-\sqrt{x}+x-\sqrt{x}=x-2\sqrt{x}+1=\left(\sqrt{x}-1\right)^2\)
\(B=\left(\dfrac{2x+1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)+\dfrac{2-2\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{2-2\sqrt{x}}{\sqrt{x}}\)
\(=\sqrt{x}-1+\dfrac{2-2\sqrt{x}}{\sqrt{x}}=\dfrac{x-\sqrt{x}+2-2\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{x-3\sqrt{x}+2}{\sqrt{x}}=\left(\sqrt{x}-1\right)\cdot\dfrac{\left(\sqrt{x}-2\right)}{\sqrt{x}}\)
2:
a:
Để B=0 thì \(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\sqrt{x}}=0\)
=>\(\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
=>\(\left[{}\begin{matrix}x=1\left(loại\right)\\x=4\left(nhận\right)\end{matrix}\right.\)
b: \(B+\dfrac{3\sqrt{x}-4}{\sqrt{x}}< =0\)
=>\(\dfrac{x-3\sqrt{x}+2+3\sqrt{x}-4}{\sqrt{x}}< =0\)
=>x-2<=0
=>x<=2
kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< x< =2\\x\ne1\end{matrix}\right.\)
3: Để B là số nguyên thì \(x-3\sqrt{x}+2⋮\sqrt{x}\)
=>\(\sqrt{x}\left(\sqrt{x}-3\right)+2⋮\sqrt{x}\)
=>\(2⋮\sqrt{x}\)
=>\(\sqrt{x}\in\left\{1;2\right\}\)
=>\(x\in\left\{1;4\right\}\)
Kết hợp ĐKXĐ, ta được: x=4
a: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên ABOC là tứ giác nội tiếp
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC
\(\left\{{}\begin{matrix}3x+2y=1\\5x+3y=-4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(3x+2y\right).3=1.3\\\left(5x+3y\right).2=-4.2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}9x+6y=3\\10x+6y=-8\end{matrix}\right.\)
\(\left\{{}\begin{matrix}9x+6y=3\\10x+6y-9x-6y=-8-3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}9x+6y=3\\x=-11\end{matrix}\right.\)
\(\left\{{}\begin{matrix}9.\left(-11\right)+6y=3\\x=-11\end{matrix}\right.\)
\(\left\{{}\begin{matrix}6y=3+99\\x=-11\end{matrix}\right.\)
\(\left\{{}\begin{matrix}6y=102\\x=-11\end{matrix}\right.\)
\(\left\{{}\begin{matrix}y=102:6\\x=-11\end{matrix}\right.\)
\(\left\{{}\begin{matrix}y=17\\x=-11\end{matrix}\right.\)
Vậy (\(x;y\)) = (-11; 17)
\(\left\{{}\begin{matrix}-3x+2y=-11\\x-3y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-3x+2y=-11\\3x-6y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4y=-11+18=7\\x-3y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-\dfrac{7}{4}\\x=3y+6=3\cdot\dfrac{-7}{4}+6=-\dfrac{21}{4}+6=\dfrac{3}{4}\end{matrix}\right.\)
Gọi vận tốc dự định của ô tô là x(km/h)
(Điều kiện: x>0)
Thời gian dự định sẽ đi hết quãng đường là \(\dfrac{80}{x}\left(giờ\right)\)
Thời gian đi hết nửa quãng đường đầu tiên là \(\dfrac{40}{x}\left(giờ\right)\)
Vận tốc đi trên nửa quãng đường còn lại là:
x+10(km/h)
Thời gian đi hết nửa quãng đường còn lại là: \(\dfrac{40}{x+10}\left(giờ\right)\)
8 phút=2/15 giờ
Theo đề, ta có phương trình:
\(\dfrac{40}{x}+\dfrac{40}{x+10}+\dfrac{2}{15}=\dfrac{80}{x}\)
=>\(-\dfrac{40}{x}+\dfrac{40}{x+10}=-\dfrac{2}{15}\)
=>\(\dfrac{40}{x}-\dfrac{40}{x+10}=\dfrac{2}{15}\)
=>\(\dfrac{20}{x}-\dfrac{20}{x+10}=\dfrac{1}{15}\)
=>\(\dfrac{20\left(x+10\right)-20x}{x\left(x+10\right)}=\dfrac{1}{15}\)
=>\(\dfrac{200}{x\left(x+10\right)}=\dfrac{1}{15}\)
=>x(x+10)=3000
=>\(x^2+10x-3000=0\)
=>(x+60)(x-50)=0
=>\(\left[{}\begin{matrix}x=-60\left(loại\right)\\x=50\left(nhận\right)\end{matrix}\right.\)
vậy: vận tốc dự định của ô tô là 50km/h
a: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp