Câu 2.( 2 điểm) Cảm nhận của em về công lao sinh thành và lời nhắn nhủ của cha ông ta qua bài ca dao sau:
Công cha như núi Thái Sơn.
Nghĩa mẹ như nước trong nguồn chảy ra.
Một lòng thờ mẹ kính cha
Cho tròn chữ hiếu mới là đạo con.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khoảng cách giữa 9 vân sáng = 9,6 mm
=> x = \(\dfrac{9,6}{8}=1,2mm\)
\(x=\dfrac{\lambda D}{a}\)
\(\Rightarrow\lambda=\dfrac{ax}{D}=\dfrac{1.10^{-3}\times1,2.10^{-3}}{2}=6.10^{-7}m=0,6\mu m\)
\(\Leftrightarrow\left[f^2\left(x\right)\right]'-3\left(x+1\right)^2=\left[\left(x^2+x\right).f\left(x\right)\right]'\)
\(\Leftrightarrow\left[f^2\left(x\right)\right]'-\left[\left(x^2+x\right).f\left(x\right)\right]'=3\left(x+1\right)^2\)
Lấy nguyên hàm 2 vế:
\(\Rightarrow f^2\left(x\right)-\left(x^2+x\right).f\left(x\right)=\int3\left(x+1\right)^2dx=\left(x+1\right)^3+C\)
Thay \(x=0\Rightarrow1^2-0=1+C\Rightarrow C=0\)
\(\Rightarrow f^2\left(x\right)-\left(x^2+x\right)f\left(x\right)=\left(x+1\right)^3\)
\(\Leftrightarrow\left[f\left(x\right)+x+1\right]\left[f\left(x\right)-\left(x+1\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}f\left(x\right)=-x-1\\f\left(x\right)=\left(x+1\right)^2\end{matrix}\right.\)
Thay \(x=0\) vào thấy \(f\left(x\right)=-x-1\) ko thỏa mãn giả thiết \(f\left(0\right)=1\)
\(\Rightarrow f\left(x\right)=\left(x+1\right)^2\)
\(\Rightarrow f'\left(x\right)=2\left(x+1\right)\)
Hoành độ giao điểm: \(\left(x+1\right)^2=2\left(x+1\right)\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
\(V=\pi\int\limits^1_{-1}\left[4\left(x+1\right)^2-\left(x+1\right)^4\right]=\dfrac{64\pi}{15}\)
Gọi các số thỏa mãn ycbt là \(N=\overline{\alpha\beta\gamma\delta\varepsilon\zeta}\)
Khi đó \(21\le\alpha+\beta+\gamma+\delta+\varepsilon+\zeta\le33\). Do đó để N chia hết cho 9 thì \(\alpha+\beta+\gamma+\delta+\sigma+\zeta=27\)
Ta liệt kê tất cả các bộ số \(\left(\alpha,\beta,\gamma,\delta,\varepsilon,\zeta\right)\) thỏa mãn: \(\left(1,2,3,6,7,8\right);\left(1,2,4,5,7,8\right);\left(1,3,4,5,6,8\right);\left(2,3,4,5,6,7\right)\)
Mỗi bộ như thế có \(6!=120\) hoán vị nên có tất cả \(4.120=480\) số thỏa mãn ycbt.
\(f'\left(x\right)=-4x^3.\left[f\left(x\right)\right]^2\Rightarrow\dfrac{f'\left(x\right)}{\left[f\left(x\right)\right]^2}=-4x^3\)
Lấy nguyên hàm 2 vế:
\(\Rightarrow-\dfrac{1}{f\left(x\right)}=\int-4x^3dx=-x^4+C\)
\(f\left(0\right)=1\Rightarrow-\dfrac{1}{f\left(0\right)}=0^4+C\Rightarrow C=-1\)
\(\Rightarrow-\dfrac{1}{f\left(x\right)}=-x^4-1\Rightarrow f\left(x\right)=\dfrac{1}{x^4+1}\)
\(\int\limits^3_0x^3.f\left(x\right)dx=\int\limits^3_0\dfrac{x^3}{x^4+1}dx\) (tích phân này rất đơn giản em tự tính hoặc bấm máy cũng được)
\(\int_1^2\dfrac{2x+3}{x}dx=\int_1^22+\dfrac{3}{x}=\left(2\cdot2+3\cdot ln\left|2\right|\right)-\left(2\cdot1+3\cdot ln1\right)\)
\(=4+3\cdot ln2-2-0=2+3\cdot ln2\)
=>a=3; b=2
=>S=a+b=5