Cho tam giác abc vuông tại A có đường cao AH (H thuộc bc). Biết AB=3cm, AC = 4cm a) Chứng minh tam giác HBA đồng dạng với tam giác ABC b) Tính độ dài đường cao AH c) Đường phân giác của goác ABC cắt AH, AC lần lượt tại M,N. Chứng minh MA.NA=MH.NC không phụ thuộc vào vị trí điểm M.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
177 + 212 = 389
456 + 210 = 666
380 + 180 = 560
796 + 388 = 1184
a: 2 tấn 5 tạ=25 tạ
Ngày thứ hai nhập về: \(25\times\dfrac{3}{5}=15\left(tạ\right)\)
Trung bình mỗi ngày nhập về: \(\dfrac{25+15}{2}=20\left(tạ\right)\)
b: 15 tạ=1500kg
Số bao cửa hàng cần dùng là:
1500:50=30(bao)
Đổi 2 tấn 5 tạ = 25 tạ
a) Ngày thứ 2 cửa hàng nhập về số tạ thóc là:
25 x 3/5 = 15 (tạ)
Trung bình mỗi ngày cửa hàng nhập về số tạ thóc là:
(25 + 15) : 2 = 20 (tạ)
b) Đổi 15 tạ = 1500 kg
Số bao cần dùng là:
1500 : 50 = 30 (bao)
Đáp số: a) 20 tạ thóc
b) 30 bao
Buổi sáng việt soạn được:
\(120\times\dfrac{2}{5}=48\left(từ\right)\)
Số từ Việt soạn được trong buổi chiều là;
\(48\times\dfrac{3}{2}=72\left(từ\right)\)
Vì 48+72=120
nên Việt đã soạn xong rồi
Số bông hoa Hà và Minh hái được là \(36\times\dfrac{3}{4}=27\left(bông\right)\)
=>Số bông hoa Trang hái được là 36-27=9(bông)
Tổng số bông hoa Minh và Trang hái được:
\(36\times\dfrac{2}{3}=24\left(bông\right)\)
Số bông hoa Minh hái được là:
24-9=15(bông)
Đổi: 1 giờ 18 phút = 1,3 giờ
Sau khi khởi hành 1 giờ 18 phút, xe máy đã đi được:
\(35\times1,3=45,5\left(km\right)\)
Sau khi khởi hành 1 giờ 18 phút, xe máy còn cách N:
\(59,5-45,5=14\left(km\right)\)
Đổi 1 giờ 18 phút =1,3 giờ
Quãng đường xe máy đi được sau 1 giờ 18 phút là:
\(35\times1,3=45,5\left(km\right)\)
Xe máy còn cách điểm B số kilomet là:
\(59,5-45,5=14\left(km\right)\)
Bài 5:
Số bánh nhân dâu là:
\(30\times\left(1-\dfrac{2}{5}\right)=30\times\dfrac{3}{5}=18\left(cái\right)\)
Bài 4:
Thời gian thang máy đi từ tầng 1 đến tầng 30 là:
\(\dfrac{10}{9}:2\times3=\dfrac{5}{9}\times3=\dfrac{5}{3}\left(phút\right)\)
=>Chọn A
6:
Tuổi mẹ là \(6\times\dfrac{13}{2}=39\left(tuổi\right)\)
tuổi bố là 39+6=45(tuổi)
Xét ΔCAB vuông tại A và ΔCDE vuông tại D có
\(\widehat{ACB}=\widehat{DCE}\)(hai góc đối đỉnh)
Do đó: ΔCAB~ΔCDE
=>\(\dfrac{AC}{DC}=\dfrac{AB}{DE}\)
=>\(\dfrac{AB}{48}=\dfrac{120}{32}\)
=>\(AB=120\cdot\dfrac{48}{32}=120\cdot\dfrac{3}{2}=180\)(m)
Tổng chiều dài và chiều rộng thửa ruộng là:
\(30\times2=60\left(m\right)\)
Chiều dài thửa ruộng là:
\(\left(60+10\right):2=35\left(m\right)\)
Chiều rộng thửa ruộng là:
\(35-10=25\left(m\right)\)
a. Diện tích thửa ruộng là:
\(35\times25=875\left(m^2\right)\)
b.
Đổi 20kg=0,2 tạ
Số tạ thóc thu hoạch được là:
\(875\times0,2:5=35\) (tạ)
Tổng chiều dài và chiều rộng của thửa ruộng là:
30 x 2 = 60 (m)
Chiều dài của thửa ruộng là:
(60 + 10) : 2 =35 (m)
Chiều rộng của thửa ruộng là:
35 - 10 = 25 (m)
a. Diện tích mảnh vườn là:
35 × 25 = 875 (m2)
b.Đổi 20kg = 0,2 tạ thóc
Số tạ thóc thu hoạch được là:
Đáp số: a.875(m2)
b.35(tạ)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA~ΔABC
b: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
ΔHBA~ΔABC
=>\(\dfrac{BA}{BC}=\dfrac{HB}{AB}\left(1\right)\)
ΔHBA~ΔABC
=>\(\dfrac{HA}{AC}=\dfrac{BA}{BC}\)
=>\(HA=\dfrac{3\cdot4}{5}=2,4\left(cm\right)\)
c: Xét ΔABC có BN là phân giác
nên \(\dfrac{BA}{BC}=\dfrac{NA}{NC}\left(2\right)\)
Xét ΔBHA có BM là phân giác
nên \(\dfrac{BH}{BA}=\dfrac{MH}{MA}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{NA}{NC}=\dfrac{MH}{MA}\)
=>\(MA\cdot NA=MH\cdot NC\)