Các bạn thử làm bài này xem nhá.
Cho tứ giác ABCD. Giả sử đường tròn đường kính AB tiếp xúc với CD và đường tròn đường kính CD tiếp xúc AB. Chứng minh ABCD là hình thang.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì abc = 1 nên ta hoàn toàn có thể đặt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\)
Khi đó thì \(a-1+\frac{1}{b}=\frac{x}{y}-1+\frac{z}{y}=\frac{z+x-y}{y}\)
Tương tự ta có: \(b-1+\frac{1}{c}=\frac{x+y-z}{z}\); \(c-1+\frac{1}{a}=\frac{y+z-x}{x}\)
Ta đưa điều phải chứng minh về dạng \(\left(y+z-x\right)\left(z+x-y\right)\left(x+y-z\right)\le xyz\)(*)
Đặt \(\hept{\begin{cases}y+z-x=p\ge0\\z+x-y=q\ge0\\x+y-z=r\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{q+r}{2}\\y=\frac{r+p}{2}\\z=\frac{p+q}{2}\end{cases}}\)thì (*) trở thành \(pqr\le\frac{\left(p+q\right)\left(q+r\right)\left(r+p\right)}{8}\)(Nhưng điều này đúng theo BĐT AM - GM vì \(\frac{p+q}{2}\ge2\sqrt{pq}\left(1\right);\frac{q+r}{2}\ge2\sqrt{qr}\left(2\right);\frac{r+p}{2}\ge2\sqrt{rp}\left(3\right)\), nhân theo vế của 3 BĐT (1), (2), (3), ta được điều phải chứng minh)
Đẳng thức xảy ra khi x = y = z hay a = b = c = 1
Bỏ số 2 chỗ áp dụng AM - GM cho mình nha!
\(\frac{p+q}{2}\ge\sqrt{pq};\frac{q+r}{2}\ge\sqrt{qr};\frac{r+p}{2}\ge\sqrt{rp}\)
+ Qua C kẻ đg thẳng vuông góc với AC và cắt AD tại I
Gọi H,K lần lượt là hình chiếu của O,C trên AD.
+ OD là đg trung bình của t/g ACI
=> CI = 2 OD = BD = n
+ OH là đg trung bình của t/g ACK
=> CK = 2 OH = 2h
+ t/g ACI vuông tại C, đg cao CK
Suy ra \(\frac{1}{CK^2}=\frac{1}{AC^2}+\frac{1}{CI^2}\)
\(< =>\frac{1}{\left(2h\right)^2}=\frac{1}{m^2}+\frac{1}{n^2}\)
\(< =>\frac{1}{4h^2}=\frac{1}{m^2}+\frac{1}{n^2}\)
Vậy ta có điều phải chứng minh
VÀO TKHĐ ĐỂ XEM HÌNH VẼ
Ta có tứ giác AMBC nội tiếp ( O ) nên \(\widehat{KMB}=\widehat{ACB}\)
Mặt khác \(\widehat{BFC}=\widehat{BEC}=90^0\) nên tứ giác BFEC nội tiếp suy ra \(\widehat{KFB}=\widehat{BCE}\)
Khi đó \(\widehat{KMB}=\widehat{KFB}\) nên tứ giác KMFB nội tiếp
Dễ thấy BFEC là tứ giác nội tiếp nên \(\widehat{FBC}=\widehat{FEA}\Rightarrow\) tứ giác EFCB nội tiếp
=> \(\widehat{HMA}=90^0\Rightarrow MH\perp AK\)
Nếu bạn gọi J là trung điểm của BC và chứng minh JM vuông góc AK thì bài toán khó hơn nhiều
Trả lời
\(\sqrt{17+12\sqrt{2}}=\sqrt{9+12\sqrt{2}+8}\)
\(=\sqrt{\left(3+2\sqrt{2}\right)^2}\)
\(=3+2\sqrt{2}\)