Tính :
\(a)\sqrt{16}.\sqrt{25}+\sqrt{196}:\sqrt{49}\)
\(b)\sqrt{\sqrt{81}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{\sqrt{x}-3}{\sqrt{x}-2}\)
\(\sqrt{x}-3⋮\sqrt{x}-2\Leftrightarrow\sqrt{x}-2-1⋮\sqrt{x}-2\)
\(\Leftrightarrow-1⋮\sqrt{x}-2\Leftrightarrow\sqrt{x}-2\inƯ\left(-2\right)=\left\{\pm1;\pm2\right\}\)
\(\sqrt{x}-2\) | 1 | -1 | 2 | -2 |
x | 9 | 1 | 16 | 0 |
\(B=\frac{\sqrt{x}-3}{\sqrt{x}-2}\left(x\ge0\right)\)
để B đạt giá trị âm thì \(\sqrt{x}-3\)và \(\sqrt{x}-2\)phải trái dấu nhau
ta thấy \(\sqrt{x}-3< \sqrt{x}-2\)\(\Rightarrow\hept{\begin{cases}\sqrt{x}-3< 0\\\sqrt{x}-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x}< 3\\\sqrt{x}>2\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 9\\x>4\end{cases}\Leftrightarrow}4< x< 9}\)
vậy 4<x<9 thì B đạt giá trị âm
Ap dung bdt Holder ta co
\(VP=\left(a^3+b^3+0^3\right)\left(b^3+y^3+0^3\right)\left(c^3+z^3+0^3\right)\ge\left(abc+xyz+0\right)^3=VT\)
P/s: Day la 1 he qua quen thuoc cua bdt Holder
Đặt \(x^2=t\left(t\ge0\right)\)
\(\Leftrightarrow t^2-16t+32=0\)
\(\Delta=\left(-16\right)^2-4.32=256-128=128>0\)
\(t_1=\frac{16-\sqrt{128}}{2}=8-4\sqrt{2};t_2=\frac{16+\sqrt{128}}{2}=8+4\sqrt{2}\)
Theo bài ra ta có :
\(x_0=\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}-\sqrt{3\left(2-\sqrt{2+\sqrt{3}}\right)}\)
tịt lun, cái pt căn này chill quá
๖²⁴ʱ๖ۣۜTɦủү❄吻༉ Mơn Bạn nha .
P/s : làm nháp thử mn sửa giúp nha ( thực ra em cũng chả hiểu cái gì cả T_T )
Ta có :
\(\left(x_0\right)^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3\left(2-\sqrt{3}\right)}\)
\(\Rightarrow\left(\frac{8-\left(x_0\right)^2}{2}\right)^2=2+\sqrt{3}+3\left(2-\sqrt{3}\right)+2\sqrt{3\left(4-3\right)}=8\)
\(\Rightarrow64-16\left(x_0\right)^2+\left(x_0\right)^4=32\)
\(\Rightarrow\left(x_0\right)^4-16\left(x_0\right)^2+32=0\left(đpcm\right)\)
\(\sqrt{x^2-8x+16}+\left|x+2\right|=0\)
<=> \(\sqrt{\left(x-4\right)^2}+\left|x+2\right|=0\)
<=> \(\left|x-4\right|+\left|x+2\right|=0\)
<=> \(\left|4-x\right|+\left|x+2\right|=0\)
Ta thấy: \(\left|4-x\right|+\left|x+2\right|\ge\left|4-x+x+2\right|=\left|6\right|=6\)
mà \(\left|4-x\right|+\left|x+2\right|=0\)
=> pt vô nghiệm
e lớp 7 nên sai thì thôi ạ
\(P=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{x+2007}{x}\left(ĐK:x\ne\pm1;0\right)\)
\(=\left(\frac{\left(x+1\right)^2-\left(x-1\right)^2}{x^2-1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{x+2007}{x}\)
\(=\left[\frac{\left(x+1+x-1\right)\left(x+1-x-1\right)}{x^2-1}+\frac{x^2-4x-1}{x^2-1}\right].\frac{x+2007}{x}\)
\(=\left(\frac{2x.0}{x^2-1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{2007}{x}+\frac{x^2-4x-1}{x^2-1}\)
\(=\frac{2007\left(x^2-4x-1\right)}{x^3-x}+\frac{x^2-4x-1}{x^2-1}\)
\(=\frac{2007x^2-8028x-2007}{x^3-x}+\frac{x^3-4x^2-x}{x^3-x}\)
\(=\frac{x^3+2003x^2-8029x-2007}{x^3-x}\)( số to vch )
a) \(\sqrt{16}.\sqrt{25}+\sqrt{196}:\sqrt{49}\)
=4.5+14:7
=20+2
=22
b) chưa học nhó:))
Cảm ơn bạn nhỏ :))