K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(\sqrt{16}.\sqrt{25}+\sqrt{196}:\sqrt{49}\)

=4.5+14:7

=20+2

=22

b) chưa học nhó:))

13 tháng 8 2020

Cảm ơn bạn nhỏ :))

12 tháng 8 2020

\(B=\frac{\sqrt{x}-3}{\sqrt{x}-2}\)

\(\sqrt{x}-3⋮\sqrt{x}-2\Leftrightarrow\sqrt{x}-2-1⋮\sqrt{x}-2\)

\(\Leftrightarrow-1⋮\sqrt{x}-2\Leftrightarrow\sqrt{x}-2\inƯ\left(-2\right)=\left\{\pm1;\pm2\right\}\)

\(\sqrt{x}-2\)1-12-2
x91160
12 tháng 8 2020

\(B=\frac{\sqrt{x}-3}{\sqrt{x}-2}\left(x\ge0\right)\)

để B đạt giá trị âm thì \(\sqrt{x}-3\)và \(\sqrt{x}-2\)phải trái dấu nhau 

ta thấy \(\sqrt{x}-3< \sqrt{x}-2\)\(\Rightarrow\hept{\begin{cases}\sqrt{x}-3< 0\\\sqrt{x}-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x}< 3\\\sqrt{x}>2\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 9\\x>4\end{cases}\Leftrightarrow}4< x< 9}\)

vậy 4<x<9 thì B đạt giá trị âm

11 tháng 8 2020

Ap dung bdt Holder ta co

\(VP=\left(a^3+b^3+0^3\right)\left(b^3+y^3+0^3\right)\left(c^3+z^3+0^3\right)\ge\left(abc+xyz+0\right)^3=VT\)

P/s: Day la 1 he qua quen thuoc cua bdt Holder

12 tháng 8 2020

Automa checking inequality. (Ảnh trong thống kê hỏi đáp)

Đặt \(x^2=t\left(t\ge0\right)\)

\(\Leftrightarrow t^2-16t+32=0\)

\(\Delta=\left(-16\right)^2-4.32=256-128=128>0\)

\(t_1=\frac{16-\sqrt{128}}{2}=8-4\sqrt{2};t_2=\frac{16+\sqrt{128}}{2}=8+4\sqrt{2}\)

Theo bài ra ta có : 

\(x_0=\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\)

\(=\sqrt{2+\sqrt{3}}-\sqrt{3\left(2-\sqrt{2+\sqrt{3}}\right)}\)

tịt lun, cái pt căn này chill quá 

11 tháng 8 2020

 ๖²⁴ʱ๖ۣۜTɦủү❄吻༉ Mơn Bạn nha .

P/s : làm nháp thử mn sửa giúp nha ( thực ra em cũng chả hiểu cái gì cả T_T )

Ta có :

\(\left(x_0\right)^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3\left(2-\sqrt{3}\right)}\)

\(\Rightarrow\left(\frac{8-\left(x_0\right)^2}{2}\right)^2=2+\sqrt{3}+3\left(2-\sqrt{3}\right)+2\sqrt{3\left(4-3\right)}=8\)

\(\Rightarrow64-16\left(x_0\right)^2+\left(x_0\right)^4=32\)

\(\Rightarrow\left(x_0\right)^4-16\left(x_0\right)^2+32=0\left(đpcm\right)\)

9 tháng 8 2020

\(\sqrt{x^2-8x+16}+\left|x+2\right|=0\)

<=> \(\sqrt{\left(x-4\right)^2}+\left|x+2\right|=0\)

<=> \(\left|x-4\right|+\left|x+2\right|=0\)

<=> \(\left|4-x\right|+\left|x+2\right|=0\)

Ta thấy: \(\left|4-x\right|+\left|x+2\right|\ge\left|4-x+x+2\right|=\left|6\right|=6\)

mà \(\left|4-x\right|+\left|x+2\right|=0\)

=> pt vô nghiệm

9 tháng 8 2020

e lớp 7 nên sai thì thôi ạ

\(P=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{x+2007}{x}\left(ĐK:x\ne\pm1;0\right)\)

\(=\left(\frac{\left(x+1\right)^2-\left(x-1\right)^2}{x^2-1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{x+2007}{x}\)

\(=\left[\frac{\left(x+1+x-1\right)\left(x+1-x-1\right)}{x^2-1}+\frac{x^2-4x-1}{x^2-1}\right].\frac{x+2007}{x}\)

\(=\left(\frac{2x.0}{x^2-1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{2007}{x}+\frac{x^2-4x-1}{x^2-1}\)

\(=\frac{2007\left(x^2-4x-1\right)}{x^3-x}+\frac{x^2-4x-1}{x^2-1}\)

\(=\frac{2007x^2-8028x-2007}{x^3-x}+\frac{x^3-4x^2-x}{x^3-x}\)

\(=\frac{x^3+2003x^2-8029x-2007}{x^3-x}\)( số to vch )

9 tháng 8 2020

ừm , sai thật em ạ, tìm x mà số to quá

9 tháng 8 2020

\(x\in\left(2;+\infty\right)\)

Thử sức đề mình soạn cho các bạn có mục tiêu thi HSG toán 9 ( học kỳ I ) thôi nhé :DCâu 1:a) Tính giá trị biểu thức \(E=\frac{\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}}{\sqrt[3]{\sqrt[3]{2}-1}}\)b) Cho x,y thỏa mãn \(x\ne\pm y\) Đặt \(\frac{x+y}{x-y}+\frac{x-y}{x+y}=a\)Tính giá trị của biểu thức \(M=\frac{x^4+y^4}{x^4-y^4}+\frac{x^4-y^4}{x^4+y^4}\)Câu 2:a) Giải phương...
Đọc tiếp

Thử sức đề mình soạn cho các bạn có mục tiêu thi HSG toán 9 ( học kỳ I ) thôi nhé :D

Câu 1:

a) Tính giá trị biểu thức \(E=\frac{\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}}{\sqrt[3]{\sqrt[3]{2}-1}}\)

b) Cho x,y thỏa mãn \(x\ne\pm y\) Đặt \(\frac{x+y}{x-y}+\frac{x-y}{x+y}=a\)

Tính giá trị của biểu thức \(M=\frac{x^4+y^4}{x^4-y^4}+\frac{x^4-y^4}{x^4+y^4}\)

Câu 2:

a) Giải phương trình: \(\frac{\sqrt{3x+1}+\sqrt{x+3}}{x+5+\sqrt{2\left(x^2+1\right)}}=\left(1-x\right)\sqrt{1-x}+\frac{3-3\sqrt{x}}{2}\)

b) Giải hệ phương trình:  \(\hept{\begin{cases}14x^2-21y^2-6x+45y-14=0\\35x^2+28y^2+41x-122y+56=0\end{cases}}\)

Câu 3:

a)  Cho \(x_0;x_1;x_2;.......\) được xác định bởi: \(x_n=\left[\frac{n+1}{\sqrt{2}}\right]-\left[\frac{n}{\sqrt{2}}\right]\).

Hỏi trong 2006 số đầu tiên của dãy có mấy số khác 0

b)  Giải phương trình nghiệm nguyên: \(m^n=n^{m-n}\)

c) Cho phương trình \(x^2-4x+1=0\). Gọi \(x_1;x_2\) là 2 nghiệm của phương trình. Đặt \(a_n=\frac{x_1^n+x_2^n}{2\sqrt{3}}\) với n là số nguyên dương. Chứng minh rằng \(a_n\) là một số nguyên với mọi n

d) Cho bộ số nguyên dương thỏa mãn \(a^2+b^2=c^2\). Chứng minh rằng không thể tồn tại số nguyên dương n sao cho:

\(\left(\frac{c}{a}+\frac{c}{b}\right)^2=n\)

Câu 4:

a) Cho các số dương a,b,c. Chứng minh rằng:

\(\frac{a\left(b+c\right)}{a^2+bc}+\frac{b\left(c+a\right)}{b^2+ca}+\frac{c\left(a+b\right)}{c^2+ab}\ge1+\frac{16abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

b) Cho các số không âm a,b,c thỏa mãn \(\left(a+b\right)\left(b+c\right)\left(c+a\right)>0\)Tìm giá trị nhỏ nhất của biểu thức:
\(A=\sqrt{\frac{b^2-bc+c^2}{a^2+bc}}+\sqrt{\frac{c^2-ca+a^2}{b^2+ca}}+\sqrt{\frac{a^2-ab+b^2}{c^2+ab}}+\frac{2\left(ab+bc+ca\right)}{a^2+b^2+c^2}\)

Câu 5:

1)

Cho tam giác ABC có 3 đường cao AD, BE, CF cắt nhau tại H, EF cắt BC tại P. Qua D kẻ đường thẳng song song EF cắt AB, AC lần lượt tại Q, R.

a) Chứng minh rằng \(\frac{PB}{PC}=\frac{DB}{DC}\)

b) Gọi X là trung điểm AH. EF cắt AH tại Y. Chứng minh rằng Y là trực tâm tam giác XBC.

2)

Cho E và F lần lượt là các trung điểm của cạnh AD và CD của hình bình hành ABCD sao cho \(\widehat{AEB}=\widehat{AFB}=90^0\), và G là điểm nằm trên BF sao cho EG // AB. Gọi DH, AF lần lượt cắt cạnh BC, BE tại I, H. Chứng minh  rằng \(FI\perp FH\)

Câu 6:

Tìm giá trị nhỏ nhất của a là cạnh hình vuông sao cho có thể đặt 5 tấm bìa hình tròn bán kính 1 trong hình vuông đó mà các tấm bìa không chờm lên nhau.

 GOODLUCK.

WARNING: COMMENT LUNG TUNG SẼ BỊ CÔ QUẢN LÝ CHO "PAY ẶC" nhé !

Thời gian làm bài ( 180 phút ).

16
8 tháng 8 2020

Thời gian được tính từ 7 giờ 30 phút từ sáng mai nha mọi người :D ai làm được bài nào ( 1 ý thôi cũng được ) thì " chốt đơn" 11h post lên nhé :D 

8 tháng 8 2020

Bất đẳng thức học kì mà cho vậy có lẽ không phù hợp á bác Cool Kid.