tìm số nguyên n lớn nhất sao cho n mũ 200 < 5 mũ 300
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau
a/2=b/3=c/4=a+2b-3c/2+6-12=-20/-4=5
Từ a/2=5-> a=10
b/3=5-> b=15
c/4=5-> c=20
Vậy a=10, b=15 , c=20
Theo đề bài : a:b:c:d=2:3:4:5
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
Theo bài ra ta có : \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và \(a+b+c+d=-42\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
\(\Rightarrow a=-3.2=-6;b=-3.3=-9;c=-3.4=-12;d=-3.5=-15\)
Đặt a/b = b/c = c/a = k
=> a = bk, b = ck, c = ak
=> a + b + c = bk + ck + ak = k(a + b + c)
=> k = 1
a/b = k = 1 => a = b
b/c = k = 1 => b = c
Vậy a = b = c.
Cách này có thể dùng với những dãy tỉ số bằng nhau rất dài vì chỉ quy về 1 ẩn nên dễ giải hơn nhiều
Theo đề bài ta có :
\(n^{200}< 5^{300}\)( với n lớn nhất )
\(\left(n^2\right)^{100}< \left(5^3\right)^{100}\)
\(\left(n^2\right)^{100}< 125^{100}\)
\(n^2< 125\)
\(\Rightarrow n^2\in\left\{0;1;2;...;124\right\}\)
mà n lớn nhất \(\Rightarrow n^2=124\)
\(\Rightarrow n=\sqrt{124}\)
ta co 5^300=(5^3)^100=125^100
n^200=(n^2)^100
nen n^2<125 suy ra n=11