Cho m, u là các số nguyên dương. Tìm giá trị chỏ nhất của vdk=m2+n2+1/m2+1/n2+2014
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để chứng minh ADEF là hình chữ nhật, ta cần chứng minh các đẳng thức đường cao AH = trung tuyến AE và hình chiếu D, F của E trên AB, AC vuông góc với AB, AC.
a) Chứng minh AH = AE: Vì tam giác ABC là tam giác vuông tại A, nên đường cao AH cũng là đường cao của tam giác vuông ABC. Do đó, ta có AH = BH. Từ tam giác ABC, ta có AE là trung tuyến nên AE = EC. Vậy, AH = AE.
b) Chứng minh AD = AF: Ta có hai tam giác vuông ADE và AFE có cạnh chung AE. Vì AE là trung tuyến nên ta có DE = FE, và góc ADE = góc AFE = 90 độ (do DE và FE vuông góc với AB, AC). Do đó, ta có hai tam giác ADE và AFE đồng dạng (cạnh góc). Từ đó suy ra, AD = AF.
Vì AH = AE và AD = AF, nên tứ giác ADEF là hình chữ nhật.
c) Chứng minh BDFE là hình bình hành: Ta đã chứng minh được AD = AF, nên BD = BF (do AB < AC). Vì DE = EF (vì trung tuyến), và góc EDF = góc EBF = 90 độ (hình chiếu của E trên AB, AC vuông góc với AB, AC), nên ta có hai cạnh và một góc tương đương nhau. Do đó, tứ giác BDFE là hình bình hành.
d) Chứng minh F là trung điểm của AC: Vì AE là trung tuyến của tam giác ABC, nên F là trung điểm của AC.
Vậy, ta đã chứng minh được các yêu cầu đề bài.
Để chứng minh rằng 3 điểm H, G, C thẳng hàng, ta cần sử dụng một số kiến thức về hình học và tính chất của tam giác. Từ đề bài, ta biết rằng tam giác ABC là tam giác vuông tại A, i là trung điểm của cạnh AC, và k là một đường thẳng song song với cạnh AB. Ta cũng biết rằng đường thẳng ck cắt đường thẳng BI tại điểm Da và đường thẳng cm cắt đường thẳng CDI tại điểm Da. Từ đó, ta có thể suy ra rằng tam giác ABI và tam giác CDI là hai tam giác đồng dạng.
Để chứng minh AK = IHc, ta cần sử dụng tính chất của tam giác đồng dạng và các đường thẳng song song. Tuy nhiên, để chứng minh điều này, ta cần có thêm thông tin về vị trí của các điểm và các góc trong tam giác ABC.
1)
\((x+2)(x+3)(x+4)(x+5)-24\\=[(x+2)(x+5)]\cdot[(x+3)(x+4)]-24\\=(x^2+7x+10)(x^2+7x+12)-24\)
Đặt \(x^2+7x+10=y\), khi đó biểu thức trở thành:
\(y(y+2)-24\\=y^2+2y-24\\=y^2+2y+1-25\\=(y+1)^2-5^2\\=(y+1-5)(y+1+5)\\=(y-4)(y+6)\\=(x^2+7x+10-4)(x^2+7x+10+6)\\=(x^2+7x+6)(x^2+7x+16)\)
2) Bạn xem lại đề!
Lời giải:
1.
$x^3+3x^2-16x-48=(x^3+3x^2)-(16x+48)=x^2(x+3)-16(x+3)$
$=(x+3)(x^2-16)=(x+3)(x-4)(x+4)$
2.
$4x(x-3y)+12y(3y-x)=4x(x-3y)-12y(x-3y)=(x-3y)(4x-12y)=4(x-3y)(x-3y)=4(x-3y)^2$
3.
$x^3+2x^2-2x-1=(x^3-x^2)+(3x^2-3x)+(x-1)=x^2(x-1)+3x(x-1)+(x-1)$
$=(x-1)(x^2+3x+1)$
a/
\(ME\perp AB\) (gt)
\(AC\perp AB\Rightarrow AF\perp AB\)
=> ME//AF
\(AB\perp AC\Rightarrow AE\perp AC\)
=> MF//AE
=> AEMF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Ta có \(\widehat{A}=90^o\)
=> AEMF là HCN (hbh có 1 góc vuông là HCN)
b/
Ta có
MF
Xét tg vuông ABC có
MB=MC (gt); MF//AE => MF//AB
=> AF=BF (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)
Ta có
MF=IF (gt)
=> AMCI là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
Ta có
\(MF\perp AC\Rightarrow MI\perp AC\)
=> AMCI là hình thoi (hbh có 2 đường chéo vuông góc là hình thoi)
c/
Ta có
AI//CM (cạnh đối hình thoi) => AI//BC => ABCI là hình thang
Xét tứ giác ABMI có
AI//BC (cmt) => AI//BM
MF//AB (cmt) => MI//AB
=> ABMI là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Để ABCI là hình thang cân => AB=CI (1)
Ta có
AB=MI (cạnh đối hình bình hành ABMI) (2)
AM=CI (cạnh đối hình thoi AMCI) (3)
Từ (1) (2) (3) => AB=AM=MI=CI
Xét tg vuông ABC có
BM=CM \(\Rightarrow AM=BM=CM=\dfrac{BC}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
=> AB=AM=BM => tg ABM là tg đều \(\Rightarrow\widehat{B}=60^o\)
Để ABCI là hình thang cân thì tg vuông ABC có \(\widehat{B}=60^o\)
d/
Xét tứ giác ADBM có
DE=ME (gt)
AE=BE (gt)
=> ADBM là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
=> AD//BM (cạnh đối hbh) => AD//BC
Ta có
AI//CM (cạnh đối hình thoi AMCI)
=> A;D;I thẳng hàng (từ 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng đã cho)
Ta có
AD=BM (cạnh đối hbh ADBM)
AI=CM (cạnh đối hình thoi AMCI)
BM=CM (gt)
=> AD=AI => A là trung điểm DI
vì nếu 2 cạnh ben bằng nhau và 2 cạnh đáy song song (có thể) là hình bình hành