Bài 15 (trang 11 SGK Toán 9 Tập 1)
Giải các phương trình sau:
a) $x^2-5=0$ ; b) $x^2-2\sqrt{11}x+11=0$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^2-3=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)
b, \(x^2-6=\left(x-\sqrt{6}\right)\left(x+\sqrt{6}\right)\)
c, \(x^2+2\sqrt{3}+3=x^2+2\sqrt{3}+\left(\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)^2\)
d, \(x^2-2\sqrt{5}x+5=x^2-2\sqrt{5}x+\left(\sqrt{5}\right)^2=\left(x-\sqrt{5}\right)^2\)
a) \(x^2\) - 3 = (x-\(\sqrt{3}\))(x+\(\sqrt{3}\))
b)\(x^2\)-6=(x-\(\sqrt{6}\))(x+\(\sqrt{6}\))
c) \(x^2+2\sqrt{3}x+3\)= \(\left(x+\sqrt{3}\right)^2\)
d) \(x^2-2\sqrt{5}x+5\)=\(\left(x-\sqrt{5}\right)^2\)
a, \(2\sqrt{a^2}-5a=2\left|a\right|-5a\)do a < 0
\(=-2a-5a=-7a\)
b, \(\sqrt{25a^2}+3a=\sqrt{\left(5a\right)^2}+3a=\left|5a\right|+3a\)do \(a\le0\)
TH1 : \(-5a+3a=-2a\)với \(a< 0\)
hoặc TH2 : \(5+3=8\)
c, \(\sqrt{9a^4}+3a^2=\sqrt{\left(3a^2\right)^2}+3a^2=\left|3a^2\right|+3a^2\)
\(=3a^2+3a^2=6a^2\)do \(3>0;a^2\ge0\forall a\Rightarrow3a^2\ge0\forall a\)
d, \(5\sqrt{4a^6}-3a^3=5\sqrt{\left(2a^3\right)^2}-3a^3\)
\(=5\left|2a^3\right|-3a^3=-10a^3-3a^3=-13a^3\)do \(a< 0\Rightarrow a^3< 0\)
a) \(2\sqrt{a^2}-5a\)=2\(|a|\)-5a = -2a-5a=-7a
b) \(\sqrt{25a^2}\) +3a = 5\(|a|\) + 3a=5a+3a=8a.
c) \(\sqrt{9a^4}\) + 3\(a^2\)=6\(a^2\)
d) \(5\sqrt{4a^6}\) - 3\(a^3\)=-13\(a^3\)
a) √2x+7
Để √2x+7 có nghĩa⇔2x+7≥0
⇔2x≥-7
⇔x≥−7/2
b) √−3x+4
Để √−3x+4 có nghĩa ⇔-3x+4≥≥0
⇔-3x≥-4
⇔x≤4/3
c)√1/−1+x1
Để √1/−1+x có nghĩa ⇔1/−1+x≥0
⇔-1+x>0
⇔x>1
d) √1+x21+x2
Ta có x2+1≥≥1>0;∀x∈R
Vậy x∈R
+a) \(\sqrt{2x+7}\) co nghia khi 2x+7≥0⇒x≥\(\dfrac{-7}{2}\)
b) \(\sqrt{-3x+4}\) co nghia khi -3x+4≥0⇒x≤\(\dfrac{4}{3}\)
c) \(\sqrt{\dfrac{1}{-1+x}}\) cp nghia khi \(\dfrac{1}{-1+x}\)≥0 ⇒-1+x>0⇒x>1
d) \(\sqrt{1+x^2}\) co nghia khi 1+x2 ≥0 ma \(x^2\)≥0⇒\(x^2\) + 1≥1>0 vs moi x
a) \(\sqrt{16}\).\(\sqrt{25}\)+\(\sqrt{196}\):\(\sqrt{49}\)
=4.5+14/7
=20+2
=22
a) \(\sqrt{16}\).\(\sqrt{25}\) + \(\sqrt{196}\) : \(\sqrt{49}\) = 4.5+14:9=22
b) 36:\(\sqrt{2.3^2.18}\) - \(\sqrt{169}\)= 36 : \(\)18 - 13 = -11
c) \(\sqrt{\sqrt{81}}\) = 3
d) \(\sqrt{3^2+4^2}\)= \(\sqrt{25}\)=5
a) (\(\sqrt{3}\)-1)2=3-2\(\sqrt{3}\)+1= 4-2\(\sqrt{3}\) (ĐPCM)
b) \(\sqrt{4-2\sqrt{3}}\)=\(\sqrt{3}\)-1 >0
Bình phương 2 vế, ta có:
4-2\(\sqrt{3}\)=3-2\(\sqrt{3}\)+1= 4-2\(\sqrt{3}\) (ĐPCM)
a) \(\left(\sqrt{3}-1\right)^2\)=\(\left(\sqrt{3}\right)^2\)- 2\(\sqrt{3}\) +1= 3- 2\(\sqrt{3}\) +1=4-2\(\sqrt{3}\)
b) \(\sqrt{4-2\sqrt{3}}-\sqrt{3}\) = \(\sqrt{\left(\sqrt{3}-1\right)^2}\) - \(\sqrt{3}\)= \(|\sqrt{3}-1|\)-\(\sqrt{3}\)=\(\sqrt{3}\)-1-\(\sqrt{3}\)=-1
a) \(\sqrt{x^2}\)=7
=> x2=49
=> x={-7;7}
b) \(\sqrt{x^2}\)=|-8|=8
=> x2=64
=>x={-8;8}
c) \(\sqrt{4x^2}\)=6
4x2=36
=>x2=9
=> x={-3;3}
d)\(\sqrt{9x^2}\)=|-12|=12
=> 9x2=144
=> x2=16
=> x={-4;4}
a)x=+7 hoặc x= -7
b) x=8 hoặc x= -8
c)x=3 hoặc x =-3
d) x=4 hoặc x= -4
a, \(\sqrt{\left(2-\sqrt{3}\right)^2}=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)do \(2-\sqrt{3}>0\)
b, \(\sqrt{\left(3-\sqrt{11}\right)^2}=\sqrt{\left(\sqrt{11}-3\right)^2}=\left|\sqrt{11}-3\right|=\sqrt{11}-3\)
do \(\sqrt{11}-3>0\)
c, \(2\sqrt{a^2}=2\left|a\right|=2a\)do \(a\ge0\)
d, \(3\sqrt{\left(a-2\right)^2}=3\sqrt{\left(2-a\right)^2}=3\left|2-a\right|=3\left(2-a\right)=6-3a\)
do \(a< 2\)
a, \(\sqrt{\left(0,1\right)^2}=\left|0,1\right|=0,1\)do \(0,1>0\)
b, \(\sqrt{\left(-0,3\right)^2}=\sqrt{\left(0,3\right)^2}=\left|0,3\right|=0,3\)do \(0,3>0\)
c, \(-\sqrt{\left(-1,3\right)^2}=-\sqrt{\left(1,3\right)^2}=-\left|1,3\right|=-1,3\)do \(1,3>0\)
d, \(-0,4\sqrt{\left(-0,4\right)^2}=-0,4\sqrt{\left(0,4\right)^2}=-0,4.\left|0,4\right|=-0,4.0,4=-0,14\)
do \(0,4>0\)
\(\sqrt{\left(0,1\right)^2}=\left|0,1\right|=0,1\)
\(\sqrt{\left(-0,3\right)^2}=\left|-0,3\right|=0,3\)
\(-\sqrt{\left(-1,3\right)^2}=-\left|-1,3\right|=-1,3\)
\(-0,4\sqrt{\left(-0,4\right)^2}=-0,4\cdot\left|-0,4\right|=-0,16\)
a, \(x^2-5=0\Leftrightarrow\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\Leftrightarrow x=\pm\sqrt{5}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{\pm\sqrt{5}\right\}\)
b, \(x^2-2\sqrt{11}x+11=0\Leftrightarrow x^2-2\sqrt{11}x+\left(\sqrt{11}\right)^2=0\)
\(\Leftrightarrow\left(x-\sqrt{11}\right)^2=0\Leftrightarrow x=\sqrt{11}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\sqrt{11}\right\}\)
x2 - 5 = 0
Δ = b2 - 4ac = 0 + 20 = 20
Δ > 0, áp dụng công thức nghiệm thu được x = ±√5
x2 - 2√11x + 11 = 0
Δ = b2 - 4ac = 44 - 44 = 0
Δ = 0 => phương trình có nghiệm kép x1 = x2 = -b/2a = √11