Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+1\right)\left(x-1\right)=0\)
Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2+1\ge1>0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
(x2+1).(x-1)=0
=> có 2 TH : (x2+1) = 0 hoặc (x-1) = 0
TH1 : x2+1 = 0
x2 = 0 - 1
x2 = -1
=> Không tìm được x hợp lí
=> TH 1 (loại)
TH2 : x-1=0
x = 0+1
x = 1
Vậy x = 1
\(1]\left(x+5\right)\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+5=0\\x-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=4\end{matrix}\right.\)
\(2]\) (Tôi giải ở câu hỏi khác của bạn rồi nhé.)
\(3]25-\left(3+x\right)^2=3.\left(-2\right)^3\)
\(\Rightarrow25-\left(3+x\right)^2=-24\)
\(\Rightarrow25-\left(3+x\right)^2+24=0\)
\(\Rightarrow7^2-\left(3+x\right)^2=0\)
\(\Rightarrow\left[7+\left(3+x\right)\right]\left[7-\left(3+x\right)\right]=0\)
\(\Rightarrow\left(x+10\right)\left(-x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+10=0\\-x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-10\\x=4\end{matrix}\right.\)
\(4]\left(x+1\right)^3+9=-116\)
\(\Rightarrow\left(x+1\right)^3=-125\)
\(\Rightarrow\left(x+1\right)^3=\left(-5\right)^3\)
\(\Rightarrow x+1=-5\)
\(\Rightarrow x=-6\)
(X+5)(x-4) = 0
x + 5 = 0 hặc x - 4 = 0
X + 5 = 0 ⇒ X = -5; x -4 = 0 ⇒ X = 4
x ϵ \(\left\{-5;4\right\}\)
2; (x2 + 1)(x-1) = 0
x -1 = 0 ⇒ x = 1; x ϵ \(\left\{1\right\}\)
3; 25 - (3 + x)2 = 3.(-2)3
(3+x)2 = 25 + 3x8
(3+ x)2 = 49
3 + x = \(\mp\)7
3 + x = 7 ⇒ x = 7-3 =4
3 + x = -7 ⇒ x =-10
x ϵ \(\left\{-10;4\right\}\)
4; (x+1)3 + 9 = - 116
(x + 1)3 = -9 -116
(x + 1)3 = - 125 = (-5)3
X + 1 = -5
X = -1 - 5 = -6
x ϵ \(\left\{-6\right\}\)
\(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)
\(=\dfrac{1}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{99}\right)\)
\(=\dfrac{16}{99}\)
___
\(B=\dfrac{3}{3.5}+\dfrac{3}{5.7}+...+\dfrac{3}{97.99}\)
\(=\dfrac{3}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\right)\)
\(=\dfrac{3}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(=\dfrac{3}{2}.\left(\dfrac{1}{3}-\dfrac{1}{99}\right)\)
\(=\dfrac{16}{33}\)
___
\(M=1+3+5+7+...+9\)
Số số hạng: \(\left(99-1\right):2+1=50\) số hạng
Tổng: \(\left(99+1\right).50:2=2500\)
___
\(C=3+7+11+...+103\)
Số số hạng: \(\left(103-3\right):4+1=26\)
Tổng: \(\left(103+3\right).26:2=1378\)
`1,` Thay `a=-5;b=7;c=-12` vào `A` có:
`A=-5-7-12=-24`
`2,` Thay `a=-2;b=4` vào `B` có:
`B=(-2)^2-5+2.(-2).4-4^2=4-5-16-16=-33`
`3,` Thay `x=1;y=3` vào `C` có:
`C=-7.1+3.1:6-(1+3)=-7+1/2-4=-21/2`
`4,` Thay `x=-10` vào`D` có:
`D=-7.(-10)+(-10):(-5)-20=70+2-20=52`
1,A=a-b+c
=> A=-5-7+(-12)
=> A=-24
2, B= a2 -5+2ab-b2-
=> B=(-2)^2.4-(4)^2
=> B=-9
3, C= -7x+3x:6-(x+y)
=> C=-7.1+3.1:6-(1+4)
=>C=-115
4, D= -7x+x:(-5)-20
=>D= -7.(-10)+(-10):(-5)-20
=>D=52
0,75 x 4 - X = 0,25 : 1/8
3 - X = 2
X = 3-2
X = 1
\(S=7.\left(1+\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{1}{55}\right)\)
\(=7.\left(\dfrac{2}{2}+\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{110}\right)\)
\(=14.\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{110}\right)\)
\(=14.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{10}-\dfrac{1}{11}\right)\)
\(=14.\dfrac{10}{11}=\dfrac{140}{11}.\)
\(S=7\left(1+\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{1}{55}\right)\)
\(S=14\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+..+\dfrac{1}{110}\right)\)
\(S=14\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{10\cdot11}\right)\)
\(S=14\)\(\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..+\dfrac{1}{10}-\dfrac{1}{11}\right)\)
S\(=14\left(\dfrac{1}{1}-\dfrac{1}{11}\right)=14\cdot\dfrac{10}{11}=\dfrac{140}{11}\)