K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2024

cíu cíu mình với các bạn ơi

 

NV
11 tháng 5 2024

Giả sử dây AB qua C \(\Rightarrow AB\le2R=20\)

Trong trường hợp \(AB\perp OC\), áp dụng định lý Pitago:

\(AB=2AC=2\sqrt{R^2-OC^2}=2\sqrt{19}\)

\(\Rightarrow2\sqrt{19}\le AB\le20\)

\(\Rightarrow AB=\left\{9;10;...;20\right\}\) có 12 dây có độ dài là số nguyên

11 tháng 5 2024

a, \(x^2-\left(m+3\right)x+2\left(m+2\right)=0\)

\(\Delta=\left(m+3\right)^2-4\cdot2\left(m+2\right)=m^2-2m-7\)

Để phương trình có 2 nghiệm phân biệt thì: \(\Delta>0\Leftrightarrow m^2-2m-7>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m< 1-2\sqrt{2}\\m>1+2\sqrt{2}\end{matrix}\right.\)

b) \(7x^2+\left(m-1\right)x-m^2=0\) (??)

\(\Delta=\left(m-1\right)^2-4\cdot7\cdot\left(-m^2\right)=29m^2-2m+1\)

Để phương trình có 2 nghiệm phân biệt thì: \(\Delta>0\Leftrightarrow29m^2-2m+1>0\)

\(\Leftrightarrow29\left(m-\dfrac{1}{29}\right)^2+\dfrac{28}{29}>0\) (luôn đúng với mọi m)

Vậy phương trình có 2 nghiệm phân biệt với mọi m.

AH
Akai Haruma
Giáo viên
11 tháng 5 2024

Lời giải:

$A=\sqrt{8}-\sqrt{2}=\sqrt{2^2.2}-\sqrt{2}=2\sqrt{2}-\sqrt{2}=\sqrt{2}$

$B=\frac{a+2\sqrt{a}}{\sqrt{a}+2}=\frac{\sqrt{a}(\sqrt{a}+2)}{\sqrt{a}+2}=\sqrt{a}$

1: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xét (O) có

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

Xét tứ giác BCKH có \(\widehat{BCK}+\widehat{BHK}=90^0+90^0=180^0\)

nên BCKH là tứ giác nội tiếp

b: Xét ΔAHK vuông tại H và ΔACB vuông tại C có

\(\widehat{HAK}\) chung

Do đó: ΔAHK~ΔACB

=>\(\dfrac{AH}{AC}=\dfrac{AK}{AB}\)

=>\(AK\cdot AC=AH\cdot AB\)

Xét ΔBHK vuông tại H và ΔBDA vuông tại D có

\(\widehat{HBK}\) chung

Do đó: ΔBHK~ΔBDA

=>\(\dfrac{BH}{BD}=\dfrac{BK}{BA}\)

=>\(BH\cdot BA=BK\cdot BD\)

\(AK\cdot AC+BK\cdot BD\)

\(=AH\cdot AB+BH\cdot AB=AB\left(BH+AH\right)=AB^2=4R^2\)

a: Xét (O) có

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

=>AD\(\perp\)DB tại D

Xét (O) có

SA,SD là các tiếp tuyến

Do đó: SA=SD

=>S nằm trên đường trung trực của AD(1)

ta có: OA=OD

=>O nằm trên đường trung trực của AD(2)

Từ (1),(2) suy ra SOlà đường trung trực của AD

=>SO\(\perp\)AD

Ta có: SO\(\perp\)AD

AD\(\perp\)DB

Do đó: SO//DB

b: Ta có: ΔADB vuông tại D

=>ΔADC vuông tại D

Ta có: \(\widehat{SAD}+\widehat{SCD}=90^0\)(ΔACD vuông tại D)

\(\widehat{SDA}+\widehat{SDC}=\widehat{ADC}=90^0\)

mà \(\widehat{SAD}=\widehat{SDA}\)(ΔSAD cân tại S)

nên \(\widehat{SCD}=\widehat{SDC}\)

=>SC=SD

=>SC=SA(3)

c: Ta có: DH\(\perp\)AB

CA\(\perp\)AB

Do đó: DH//CA

Xét ΔBCS có DE//CS

nên \(\dfrac{DE}{SC}=\dfrac{BE}{BS}\left(4\right)\)

Xét ΔBAS có EH//SA
nên \(\dfrac{EH}{SA}=\dfrac{BE}{BS}\left(5\right)\)

Từ (3),(4),(5) suy ra DE=EH

=>E là trung điểm của DH

Gọi vận tốc xe máy là x(km/h)

(ĐK: x>0)

Vận tốc xe ô tô là x+20(km/h)

CB=AB-AC=80km

Thời gian ô tô đi từ B đến chỗ gặp là \(\dfrac{80}{x+20}\left(giờ\right)\)

Thời gian xe máy đi từ A đến chỗ gặp là \(\dfrac{120}{x}\left(giờ\right)\)

Do đó, ta có phương trình:

\(\dfrac{80}{x+20}=\dfrac{120}{x}\)

=>\(\dfrac{2}{x+20}=\dfrac{3}{x}\)

=>3(x+20)=2x

=>3x+60=2x

=>x=-60

=>Đề sai rồi bạn

NV
9 tháng 5 2024

\(P=2\left(a+b\right)-ab-7+7=2\left(a+b\right)-ab-\left(a^2+b^2+ab\right)+7\)

\(=2\left(a+b\right)-\left(a^2+2ab+b^2\right)+7\)

\(=2\left(a+b\right)-\left(a+b\right)^2+7\)

\(=8-\left(a+b-1\right)^2\le8\)

\(P_{max}=8\) khi \(\left\{{}\begin{matrix}a+b=1\\a^2+b^2+ab=7\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(-2;3\right);\left(3;-2\right)\)

NV
9 tháng 5 2024

Do I là trung điểm MN \(\Rightarrow OI\perp MN\)  \(\Rightarrow\widehat{OIA}=90^0\)

Do AB, AC là các tiếp tuyến \(\Rightarrow\widehat{OBA}=\widehat{OCA}=90^0\)

\(\Rightarrow I,B,C\) cùng nhìn OA dưới 1 góc vuông nên 5 điểm O, I, B, A, C cùng thuộc 1 đường tròn đường kính OA

Theo t/c 2 tiếp tuyến cắt nhau ta có: \(AB=AC\)

\(\Rightarrow\widehat{BIA}=\widehat{CIA}\) (2 góc nt chắn 2 cung bằng nhau của đường trònđường kính OA)

\(\Rightarrow IA\) là phân giác của BIC

NV
9 tháng 5 2024

loading...

9 tháng 5 2024

Giải phương trình nghiệm nguyên hay như nào em?