Cho tam giác ABC nội tiếp đường tròn (O). Một đường tròn tiếp xúc với AB, AC lần lượt tại E, F và tiếp xúc trong với (O) tại S. SF cắt (O) tại K khác S. BK cắt EF tại I. a) C/m KA=KC. b) C/m KA²=KF×KS. c) C/m I là tâm đg tròn nt tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử dây AB qua C \(\Rightarrow AB\le2R=20\)
Trong trường hợp \(AB\perp OC\), áp dụng định lý Pitago:
\(AB=2AC=2\sqrt{R^2-OC^2}=2\sqrt{19}\)
\(\Rightarrow2\sqrt{19}\le AB\le20\)
\(\Rightarrow AB=\left\{9;10;...;20\right\}\) có 12 dây có độ dài là số nguyên
a, \(x^2-\left(m+3\right)x+2\left(m+2\right)=0\)
\(\Delta=\left(m+3\right)^2-4\cdot2\left(m+2\right)=m^2-2m-7\)
Để phương trình có 2 nghiệm phân biệt thì: \(\Delta>0\Leftrightarrow m^2-2m-7>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m< 1-2\sqrt{2}\\m>1+2\sqrt{2}\end{matrix}\right.\)
b) \(7x^2+\left(m-1\right)x-m^2=0\) (??)
\(\Delta=\left(m-1\right)^2-4\cdot7\cdot\left(-m^2\right)=29m^2-2m+1\)
Để phương trình có 2 nghiệm phân biệt thì: \(\Delta>0\Leftrightarrow29m^2-2m+1>0\)
\(\Leftrightarrow29\left(m-\dfrac{1}{29}\right)^2+\dfrac{28}{29}>0\) (luôn đúng với mọi m)
Vậy phương trình có 2 nghiệm phân biệt với mọi m.
Lời giải:
$A=\sqrt{8}-\sqrt{2}=\sqrt{2^2.2}-\sqrt{2}=2\sqrt{2}-\sqrt{2}=\sqrt{2}$
$B=\frac{a+2\sqrt{a}}{\sqrt{a}+2}=\frac{\sqrt{a}(\sqrt{a}+2)}{\sqrt{a}+2}=\sqrt{a}$
1: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
Xét tứ giác BCKH có \(\widehat{BCK}+\widehat{BHK}=90^0+90^0=180^0\)
nên BCKH là tứ giác nội tiếp
b: Xét ΔAHK vuông tại H và ΔACB vuông tại C có
\(\widehat{HAK}\) chung
Do đó: ΔAHK~ΔACB
=>\(\dfrac{AH}{AC}=\dfrac{AK}{AB}\)
=>\(AK\cdot AC=AH\cdot AB\)
Xét ΔBHK vuông tại H và ΔBDA vuông tại D có
\(\widehat{HBK}\) chung
Do đó: ΔBHK~ΔBDA
=>\(\dfrac{BH}{BD}=\dfrac{BK}{BA}\)
=>\(BH\cdot BA=BK\cdot BD\)
\(AK\cdot AC+BK\cdot BD\)
\(=AH\cdot AB+BH\cdot AB=AB\left(BH+AH\right)=AB^2=4R^2\)
a: Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
=>AD\(\perp\)DB tại D
Xét (O) có
SA,SD là các tiếp tuyến
Do đó: SA=SD
=>S nằm trên đường trung trực của AD(1)
ta có: OA=OD
=>O nằm trên đường trung trực của AD(2)
Từ (1),(2) suy ra SOlà đường trung trực của AD
=>SO\(\perp\)AD
Ta có: SO\(\perp\)AD
AD\(\perp\)DB
Do đó: SO//DB
b: Ta có: ΔADB vuông tại D
=>ΔADC vuông tại D
Ta có: \(\widehat{SAD}+\widehat{SCD}=90^0\)(ΔACD vuông tại D)
\(\widehat{SDA}+\widehat{SDC}=\widehat{ADC}=90^0\)
mà \(\widehat{SAD}=\widehat{SDA}\)(ΔSAD cân tại S)
nên \(\widehat{SCD}=\widehat{SDC}\)
=>SC=SD
=>SC=SA(3)
c: Ta có: DH\(\perp\)AB
CA\(\perp\)AB
Do đó: DH//CA
Xét ΔBCS có DE//CS
nên \(\dfrac{DE}{SC}=\dfrac{BE}{BS}\left(4\right)\)
Xét ΔBAS có EH//SA
nên \(\dfrac{EH}{SA}=\dfrac{BE}{BS}\left(5\right)\)
Từ (3),(4),(5) suy ra DE=EH
=>E là trung điểm của DH
Gọi vận tốc xe máy là x(km/h)
(ĐK: x>0)
Vận tốc xe ô tô là x+20(km/h)
CB=AB-AC=80km
Thời gian ô tô đi từ B đến chỗ gặp là \(\dfrac{80}{x+20}\left(giờ\right)\)
Thời gian xe máy đi từ A đến chỗ gặp là \(\dfrac{120}{x}\left(giờ\right)\)
Do đó, ta có phương trình:
\(\dfrac{80}{x+20}=\dfrac{120}{x}\)
=>\(\dfrac{2}{x+20}=\dfrac{3}{x}\)
=>3(x+20)=2x
=>3x+60=2x
=>x=-60
=>Đề sai rồi bạn
\(P=2\left(a+b\right)-ab-7+7=2\left(a+b\right)-ab-\left(a^2+b^2+ab\right)+7\)
\(=2\left(a+b\right)-\left(a^2+2ab+b^2\right)+7\)
\(=2\left(a+b\right)-\left(a+b\right)^2+7\)
\(=8-\left(a+b-1\right)^2\le8\)
\(P_{max}=8\) khi \(\left\{{}\begin{matrix}a+b=1\\a^2+b^2+ab=7\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(-2;3\right);\left(3;-2\right)\)
Do I là trung điểm MN \(\Rightarrow OI\perp MN\) \(\Rightarrow\widehat{OIA}=90^0\)
Do AB, AC là các tiếp tuyến \(\Rightarrow\widehat{OBA}=\widehat{OCA}=90^0\)
\(\Rightarrow I,B,C\) cùng nhìn OA dưới 1 góc vuông nên 5 điểm O, I, B, A, C cùng thuộc 1 đường tròn đường kính OA
Theo t/c 2 tiếp tuyến cắt nhau ta có: \(AB=AC\)
\(\Rightarrow\widehat{BIA}=\widehat{CIA}\) (2 góc nt chắn 2 cung bằng nhau của đường trònđường kính OA)
\(\Rightarrow IA\) là phân giác của BIC
Giải phương trình nghiệm nguyên hay như nào em?