cho các thực a,b tm \(a^2+ab+b^2=3\)
tìm GTLN ,GTNN của \(M=a^4-ab+b^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a2+2021b2
=(a2-b2) +2022b2 (1)
Vì a,b không chia hết cho 3 => a2,b2 không chia hết cho 3
Mà a2,b2 là các số chính phương nên
Đặt a2=3m+1,b2=3n+1 (m,n thuộc N)
=> a2-b2=(3m+1)-(3n+1)=3(m-n) chia hết cho 3 (2)
Và 2022b2 chia hết cho 3 (3)
Từ (1),(2),(3) => a2+2021b2 chia hết cho 3 (đccm)
Ta có:
\(\left(\sqrt{3+\sqrt{20}}\right)^2-\left(\sqrt{5+\sqrt{5}}\right)^2\)
\(=3+\sqrt{20}-5-\sqrt{5}\)
\(=-2+2\sqrt{5}-\sqrt{5}\)
\(=-2+\sqrt{5}\)
Ta thấy: \(5>4\Rightarrow\sqrt{5}>\sqrt{4}\Rightarrow\sqrt{5}>2\)
Do đó : hiệu trên >0
Suy ra : \(\sqrt{3+\sqrt{20}}>\sqrt{5+\sqrt{5}}\)