K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2021

jdhjdhshfsjsxhxhxx                  udjdghxhjxhg

20 tháng 12 2021

sao dạo này toàn người cho toán lớp 9 nhỉ khó qué

2 tháng 12 2019

ĐK để hàm số trên là hàm bậc nhất => m-5 khác 0 => m khác 5

b) m-5>0 => hàm số đồng biến

m-5<0 => hàm số ngịch biến

2 tháng 12 2019

sử dụng bdt buinhia

\(\left(\sqrt{x-5}+\sqrt{7-x}\right)^2\le\left(1^2+1^2\right)\left(x-5+7-x\right)=4\)

\(\Rightarrow\sqrt{x-5}+\sqrt{7-x}\le2\)

dấu "=" xảy ra khi x=6

2 tháng 12 2019

\(\sqrt{x-5}+\sqrt{7-x}=2\)

\(\Leftrightarrow x-5+7-x+2\sqrt{\left(x-5\right)\left(7-x\right)}=4\)

\(\Leftrightarrow2\sqrt{\left(x-5\right)\left(7-x\right)}=2\)

\(\Leftrightarrow\left(x-5\right)\left(7-x\right)=1\)

\(\Leftrightarrow12x-x^2-36=0\)

\(\Leftrightarrow\left(x-6\right)^2=0\)

\(\Leftrightarrow x=6\)

3 tháng 12 2019

Để ý: \(2=\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{z}+\frac{z}{x}\right)+\left(\frac{z}{x}+\frac{x}{y}\right)\)

\(\ge2\sqrt{\frac{x}{z}}+2\sqrt{\frac{y}{x}}+2\sqrt{\frac{z}{y}}\)

Từ đó suy ra \(\sqrt{\frac{y}{x}}+\sqrt{\frac{z}{y}}+\sqrt{\frac{x}{z}}\le1\)

2 tháng 12 2019

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

2 tháng 12 2019

đọc lại quy tắc đi bạn đọc rồi thì sửa đi

2 tháng 12 2019

\(a,\)\(\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\)\(\Rightarrow3x+y+2x-y=3+7\)\(\Rightarrow5x=10\Rightarrow x=2\)

Mà \(3x+y=3\Rightarrow3.2+y=3\Rightarrow y=3-6=-3\)

Vậy \(\hept{\begin{cases}x=2\\y=-3\end{cases}}\)

\(b,\hept{\begin{cases}2x+5y=8\\2x-3y=0\end{cases}}\)\(\Rightarrow2x+5y-\left(2x-3y\right)=8-0\)

\(\Rightarrow2x+5y-2x+3y=8\)\(\Rightarrow8y=8\Rightarrow y=1\)

Mà \(2x+5y=8\Rightarrow2x+5=8\Rightarrow2x=\frac{8-5}{2}=\frac{3}{2}\)

Vậy \(\hept{\begin{cases}x=\frac{3}{2}\\y=1\end{cases}}\)

\(c,\hept{\begin{cases}4x+3y=6\\2x+y=4\end{cases}\Rightarrow\hept{\begin{cases}4x+3y=6\\4x+2y=8\end{cases}}}\)

\(\Rightarrow4x+3y-\left(4x+2y\right)=6-8\)

\(\Rightarrow4x+3y-4x-2y=-2\)

\(\Rightarrow y=-2\)

Mà \(4x+3y=6\Rightarrow4x-6=6\Rightarrow4x=12\Leftrightarrow x=3\)

Vậy \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)

Làm tương tự nha cậu 

18 tháng 5 2020

JKILO

2 tháng 12 2019

Từ \(x^2+y^2=1\)suy ra :  \(\left|x\right|\le1\)\(\left|y\right|\le1\).

Khi đó \(\left|x\right|^5\le\left|x\right|^2\)và \(\left|x^5-2y\right|\)

\(\le\left|x\right|^5+2\left|y\right|\le\left|x\right|^2+\left|y\right|^2-\left(\left|y\right|^2-2\left|y\right|+1\right)+1\)

\(\le x^2+y^2+1-\left(\left|y\right|-1\right)^2\le2\)

\(\Rightarrow\left|a\right|\le2\)(Vô lý)

Vậy hệ đã cho vô nghiệm với |a| > 2