Cho \(A=n^{2018}+n^{2017}+1\)
tìm số tự nhiên n sao cho A là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk chỉ viết hệ số của từng phương trình thôi :
1) 1: () : n :n
2) 1 : () : n : (n+1)
3) 1 : () :n :(n-1)
4) 1 : () : n : (n-3)
5) 2 : (3n+1) : 2 : (2n+2)
a) Xét tam giác ABC vuông tại A, có :
^B + ^C = 90 (định lý)
<=> ^B + 15 = 90 (Thay số)
<=> ^B = 75
Xét tam giác MBC, có MD vừa là đường trung trực, vừa là đường cao:
MD là đường trung trực của BC
=>MB=MC(t/c đường trung trực của đoạn thẳng)
=>MBC cân tại M (dhnb)
=> ^MBC=15
Xét tam giác ABC, có:
^ABM + ^MBC = ^ABC(MB thuộc ABC)
<=>^ABM + 15 = 75(Thay số)
<=>^ABM = 60
Xét tam giác ABM vuông tại A, có :
^ABM + ^AMB = 90 (Định lý)
<=>60+ ^AMB = 90
<=> ^AMB = 30
=> AB = 1/2 BM (t/c tam giác vuông)
<=> 2AB = BM
lại có AB = c ; MB = MC (cmt)
=> 2c = MC hay MC = 2c (đpcm)
a) Xét tam giác ABC vuông tại A, có : ^B + ^C = 90 (định lý) <=> ^B + 15 = 90 (Thay số) <=> ^B = 75 Xét tam giác MBC, có MD vừa là đường trung trực, vừa là đường cao: MD là đường trung trực của BC =>MB=MC(t/c đường trung trực của đoạn thẳng) =>MBC cân tại M (dhnb) => ^MBC=15 Xét tam giác ABC, có: ^ABM + ^MBC = ^ABC(MB thuộc ABC) <=>^ABM + 15 = 75(Thay số) <=>^ABM = 60 Xét tam giác ABM vuông tại A, có : ^ABM + ^AMB = 90 (Định lý) <=>60+ ^AMB = 90 <=> ^AMB = 30 => AB = 1/2 BM (t/c tam giác vuông) <=> 2AB = BM lại có AB = c ; MB = MC (cmt) => 2c = MC hay MC = 2c (đpcm)
Áp dụng BĐT Cô - si cho 3 số không âm:
\(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{a^3}{b^3}}+1\ge3\sqrt[3]{\sqrt{\frac{a^6}{b^6}}}=\frac{3a}{b}\)
\(\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{b^3}{c^3}}+1\ge3\sqrt[3]{\sqrt{\frac{b^6}{c^6}}}=\frac{3b}{c}\)
\(\sqrt{\frac{c^3}{a^3}}+\sqrt{\frac{c^3}{a^3}}+1\ge3\sqrt[3]{\sqrt{\frac{c^6}{a^6}}}=\frac{3c}{a}\)
Cộng vế theo vế ,ta được:
\(2\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)+3\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)\(+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
\(\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)\(+3\)
\(\Rightarrow2\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)
\(\Rightarrow\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)
Vậy \(\Rightarrow\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)(đpcm)
Trâu bò chút!
Đặt \(\sqrt{\frac{a}{b}}=x;\sqrt{\frac{b}{c}}=y;\sqrt{\frac{c}{a}}=z\Rightarrow xyz=1\)
BĐT quy về chứng minh: \(x^3+y^3+z^3\ge x^2+y^2+z^2\)
Để ý rằng: \(x^3=\frac{\left(x-1\right)^2\left(2x+1\right)}{2}+\frac{3}{2}x^2-\frac{1}{2}\)
Từ đó ta có: \(VT-VP=\Sigma_{cyc}\frac{\left(x-1\right)^2\left(2x+1\right)}{2}+\frac{1}{2}\left(\Sigma x^2-3\right)\)
\(\ge\Sigma_{cyc}\frac{\left(x-1\right)^2\left(2x+1\right)}{2}\ge0\)
P/s: Nếu thích troll người thì thế ngược lại các biến đã đặt ta tìm được:
\(VT-VP\ge\Sigma_{cyc}\frac{\left(a-b\right)^2\left(2\sqrt{a}+\sqrt{b}\right)}{2b\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)^2}\ge0\)
Với n=0 thì \(A=1\) không là số nguyên tố
Với n=1 thì \(A=3\) là số nguyên tố
Với \(n\ge2\) ta có:
\(A=n^{2018}+n^{2017}+1\)
\(=\left(n^{2018}-n^2\right)+\left(n^{2017}-n\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^{2016}-1\right)+n\left(n^{2016}-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left[\left(n^3\right)^{672}-1\right]+n\left[\left(n^3\right)^{672}-1\right]+\left(n^2+n+1\right)\)
\(=n^2\left(n^3-1\right)\cdot A+n\left(n^3-1\right)\cdot B+n^2+n+1\)
\(=\left(n^2+n+1\right)\cdot A'+\left(n^2+n+1\right)\cdot B'+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(A'+B'+1\right)\) là hợp số với \(\forall n\ge2\)