Cho tam giác ABC nhọn, nội tiếp (O). Đường cao BD,CƯ cắt nhau tại H. Vẽ đường kính AM của (O). CM a) BHCM là hình bình hành b) Gọi I là giao điểm của HM và BC.CM OI vuông góc BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(DK:x>-\frac{1}{2}\)
Dat \(\sqrt{x^2+2x+3}=t\ge\sqrt{2}\)
PT tro thanh
\(t^2-\left(2x+1\right)t+4x-2=0\)
Ta co:
\(\Delta_t=\left(2x-3\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}t_1=2x-1\\t_2=2\\t_3=x+\frac{1}{2}\end{cases}}\)
Sau do the vao roi giai la xong :D
pt <=> \(\left(x^2+2x+3\right)-\left(2x+1\right)\sqrt{x^2+2x+3}+4x-2=0\)
đặt t=\(\sqrt{x^2+2x+3}\left(t\ge3\right)\), ta được \(r^2-\left(2x+1\right)t+4x-2=0\)
ta có: \(\Delta=\left(2x-3\right)^2\)=> pt có 2 nghiệm t=2x-1; t=2
với t=2x-1 ta có: \(\sqrt{x^2+2x+3}=2x-1\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\3x^2-6x-2=0\end{cases}\Leftrightarrow x=\frac{3+\sqrt{5}}{3}}\)
với t=2 ta có: \(\sqrt{x^2+2x+3}=2\Leftrightarrow x^2+2x-1=0\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{2}\\x=1-\sqrt{2}\end{cases}}\)
Vậy....
Đặt \(m=a^2+bc\);\(n=b^2+2ca\);\(p=c^2+2ab\)
Lúc đó: \(m+n+p=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(=\left(a+b+c\right)^2< 1\)(vì a + b + c < 1 )
\(BĐT\Leftrightarrow\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\ge9\)và m + n + p < 1 ; m,n,p > 0
Áp dụng BĐT Cô -si cho 3 số không âm:
\(m+n+p\ge3\sqrt[3]{mnp}\)
và \(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\ge3\sqrt[3]{\frac{1}{mnp}}\)
\(\Rightarrow\left(m+n+p\right)\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge9\)
Mà m + n + p < 1 nên \(\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge9\)
hay \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\ge9\)
Áp dụng BĐT Cô - si cho 3 số không âm:
\(x+y+z\ge3\sqrt[3]{xyz}\)hay \(1\ge3\sqrt[3]{xyz}\)
\(\Rightarrow\sqrt[3]{xyz}\le\frac{1}{3}\Rightarrow xyz\le\frac{1}{27}\)
(Dấu "="\(\Leftrightarrow x=y=z=\frac{1}{3}\))
Lại áp dụng BĐT Cô - si cho 3 số không âm là x + y; y + z; x + z, ta được:
\(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\ge3\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(\Rightarrow2\ge3\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)(Vì x + y + z = 1)
\(\Rightarrow27\left(x+y\right)\left(y+z\right)\left(x+z\right)\le8\)(lập phương hai vế)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\le\frac{8}{27}\)
(Dâú "="\(\Leftrightarrow x=y=z=\frac{1}{3}\))
\(\Rightarrow S\le\frac{1}{27}.\frac{8}{27}=\frac{8}{729}\)(Dâú "="\(\Leftrightarrow x=y=z=\frac{1}{3}\))