Bài 72 (trang 40 SGK Toán 9 Tập 1)
Phân tích thành nhân tử (với các số $x, y, a, b$ không âm và $a \geq b$)
a) $x y-y \sqrt{x}+\sqrt{x}-1$ ; b) $\sqrt{a x}-\sqrt{b y}+\sqrt{b x}-\sqrt{a y}$ ;
c) $\sqrt{a+b}+\sqrt{a^{2}-b^{2}}$ ; d) $12-\sqrt{x}-x$
\(a,\left(\sqrt{8}-3.\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)
\(=\sqrt{8}.\sqrt{2}-3\sqrt{2}.\sqrt{2}+\sqrt{10}.\sqrt{2}-\sqrt{5}\)
\(=\sqrt{16}-3.2+\sqrt{20}-\sqrt{5}\)
\(=\sqrt{4^2}-6+\sqrt{2^2.5}-\sqrt{5}\)
\(=2-6+2\sqrt{5}-\sqrt{5}\)
\(=-2+\sqrt{5}\)
\(b,\)
\(0,2\sqrt{\left(-10^2\right).3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}\)
\(=0,2.\left|-10\right|.\sqrt{3}+2\left|\sqrt{3}-\sqrt{5}\right|\)
\(=0,2.10.\sqrt{3}+2\left(\sqrt{5}-\sqrt{3}\right)\)
\(=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}\)
\(=2\sqrt{5}\)
a) xy−y√x+√x−1xy−yx+x−1
=y⋅√x⋅√x−y√x+√x−1=y⋅x⋅x−yx+x−1
=y√x(√x−1)+(√x−1)=yx(x−1)+(x−1)
=(√x−1)(y√x+1)=(x−1)(yx+1).
b) √ax−√by+√bx−√ayax−by+bx−ay
=(√ax+√bx)−(√ay+√by)=(ax+bx)−(ay+by)
=(√a⋅√x+√b⋅√x)−(√a⋅√y+√b⋅√y)=(a⋅x+b⋅x)−(a⋅y+b⋅y)
=√x(√a+√b)−√y(√a+√b)=x(a+b)−y(a+b)
=(√a+√b)(√x−√y)=(a+b)(x−y).
c) √a+b+√a2−b2a+b+a2−b2
=√a+b+√(a+b)(a−b)=a+b+(a+b)(a−b)
=√a+b+√a+b⋅√a−b=a+b+a+b⋅a−b
=√a+b(1+√a−b)=a+b(1+a−b).
d) 12−√x−x12−x−x
=12−4√x+3√x−x=12−4x+3x−x
=4(3−√x)+√x(3−√x)=4(3−x)+x(3−x)
=(3−√x)(4+√x)=(3−x)(4+x).