Cho tam giác ABC vuông tại A (AB<AC), AH là đường cao. Gọi D, E lần lượt là trung điểm của các cạnh AB và BC. Gọi M là giao điểm của đường thẳng vuông góc với BC tại B và đường thẳng DE. Gọi N là giao điểm của CM và AH. Chứng minh rằng:
a) ΔABC đồng dạng ΔHBA
b) AH²=BH.CH
c) N là trung điểm của AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đừng sủa lắm , không biết mỏi mồm à
a,\(\left(3x-2y\right)^2-\left(5x+7y\right)^2-14y^2\)
\(=9x^2+4y^2-12xy-25x^2-49y^2-70xy-14y^2\)
\(=-16x^2-59y^2-82xy\)
b,\(-\left(4x-\frac{3}{2}\right)^2+\left(3-2x\right)^2-\frac{1}{4}\)
\(=-16x^2+12x-\frac{9}{4}+9-12x+4x^2-\frac{1}{4}\)
\(=-12x^2-\frac{5}{2}+9=\frac{13}{2}-12x^2\)
c,\(\left(2x+1\right)^2-2\left(2x+1\right).\left(7+3x\right)+\left(7+3x\right)^2\)
\(=\left(2x+1-7-3x\right)^2=\left(-6-x\right)^2=36+12x+x^2\)
d, \(\left(5-3x\right)^2+2\left(5-3x\right)\left(7+3x\right)+\left(7+3x\right)^2\)
\(=\left(5-3x+7+3x\right)^2=12^2=144\)
Bài này chỉ tìm được Min thôi nhé:)
Ta có: \(B=4x^2-3x^3=x^2\left(4-3x\right)\)
Vì \(0\le x< \frac{4}{3}\Rightarrow4-3x>0\)
\(\Rightarrow B\ge0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(x^2=0\Rightarrow x=0\)
Vậy \(B_{Min}=0\Leftrightarrow x=0\)
Bài này mình tìm đc MAX bạn r bạn nhé
TH1: x=0 thì B=0 (1)
TH2; \(0< x< \frac{4}{3}\)
Suy ra: 4-3x >0
Ta có \(B=4x^2-3x^3 \)
<=> \(x.B=x.x.x.\left(4-3x\right)\) (do 0<x<4/3)
ÁP DỤNG BĐT CAUCHY cho các số dương ta đc
\(x.B=x.x.x.\left(4-3x\right)\le\left(\frac{x+x+x+4-3x}{4}\right)^4=1\)
Suy ra \(B\le\frac{1}{x}\) (do 0<x<4/3) (2)
Lại có \(\frac{1}{x}>0\) vói mọi 0<x<4/3 (3)
Nên từ (1), (2), (3) suy ra
\(MaxB=\frac{1}{x}\Leftrightarrow\hept{\begin{cases}x=x=x=4-3x\\0< x< \frac{4}{3}\end{cases}
\Leftrightarrow\hept{\begin{cases}x=1\left(TMĐK\right)\\0< x< \frac{4}{3}\end{cases}}}\)
Khi đó Max B= 1
B C A E D F H
Bài làm:
a) Δ EHB ~ Δ DHC (g.g) vì:
+ \(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)
+ \(\widehat{BEH}=\widehat{CDH}=90^0\)
=> đpcm
b) Theo phần a, 2 tam giác đồng dạng
=> \(\frac{HE}{HB}=\frac{HD}{HC}\)
Δ HED ~ Δ HBC (c.g.c) vì:
+ \(\frac{HE}{HB}=\frac{HD}{HC}\) (chứng minh trên)
+ \(\widehat{EHD}=\widehat{BHC}\) (đối đỉnh)
=> đpcm
c) Δ ABD ~ Δ ACE (g.g) vì:
+ \(\widehat{ADB}=\widehat{AEC}=90^0\)
+ \(\widehat{A}\) chung
=> \(\frac{AD}{AE}=\frac{AB}{AC}\)
Δ ADE ~ Δ ABC (c.g.c) vì:
+ \(\frac{AD}{AE}=\frac{AB}{AC}\) (chứng minh trên)
+ \(\widehat{A}\) chung
=> đpcm
d) Gọi F là giao của AH với BC
Δ BHF ~ Δ BCD (g.g) vì:
+ \(\widehat{BFH}=\widehat{BDC}=90^0\)
+ \(\widehat{B}\) chung
=> \(\frac{BF}{BH}=\frac{BD}{BC}\Rightarrow BD.BH=BF.BC\left(1\right)\)
Tương tự ta chứng minh được:
\(CH.CE=FC.BC\left(2\right)\)
Cộng vế (1) và (2) lại ta được:
\(BD.BH+CH.CE=\left(BF+FC\right)BC=BC.BC=BC^2\)
=> đpcm
pt <=> \(\left(x-3\right)^2\left(x+3\right)^2-\left(x-3\right)^2=0\)
<=> \(\left(x-3\right)^2\left(\left(x+3\right)^2-1\right)=0\)
<=> \(\orbr{\begin{cases}\left(x-3\right)^2=0\\\left(x+3\right)^2-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\\\left(x+3\right)^2=1\end{cases}}\)
<=> x = 3 hoặc \(\orbr{\begin{cases}x+3=1\\x+3=-1\end{cases}}\)
<=> x = 3 hoặc \(\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)
VẬY \(x\in\left\{-2;-4;3\right\}\)
Bài làm:
\(\left(x^2-9\right)^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left[\left(x-3\right)\left(x+3\right)\right]^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)^2\left[\left(x+3\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-3\right)^2=0\\\left(x+3\right)^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\\left(x+3\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\\left(x+3\right)^2=1\end{cases}}\)
Nếu \(\left(x+3\right)^2=1\Leftrightarrow\orbr{\begin{cases}x+3=1\\x+3=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)
Vậy tập nghiệm của PT \(S=\left\{-4;-2;3\right\}\)
B C M N E F D A
Bài làm:
a) Vì AM = AN và \(\widehat{MAN}=\widehat{BAC}=60^0\) (đối đỉnh)
=> Tam giác AMN đều
=> \(\widehat{MNA}=60^0=\widehat{ACB}\)
Mà 2 góc này ở vị trí so le trong
=> MN // BC
=> Tứ giác MNCB là hình thang
Lại có \(\hept{\begin{cases}AM=AN\\AB=AC\end{cases}\Rightarrow}AM+AB=AN+AC\)
\(\Rightarrow MB=NC\)
Vì MB,NC là 2 đường chéo hình thang MNCB
=> MNCB là hình thang cân
b) Nối M với D, C với F
Vì D,F là trung điểm của AN,AB
=> MD,CF là 2 đường trung tuyến của tam giác AMN và ABC
Mà 2 tam giác này đều
=> \(\hept{\begin{cases}MD\perp NC\left(\perp NA\right)\\CF\perp BM\left(\perp AB\right)\end{cases}}\)
=> Tam giác CDM và tam giác CFM vuông tại D,F
Mà DE,FE là 2 đường trung tuyến ứng với cạnh huyền của 2 tam giác vuông nói trên
=> \(DE=FE=\frac{1}{2}MC\left(1\right)\)
Vì D,F là trung điểm của AN,AB
=> DF là đường trung bình của tam giác ANB
=> \(DF=\frac{1}{2}NB\left(2\right)\)
Mà NB = MC ( MNCB là hình thang cân ) nên kết hợp với (1) và (2)
=> \(DF=FE=ED\)
=> Tam giác DEF đều
Nếu đây là nhân đơn thức với đa thức thì...
\(\left(3x^3y-\frac{1}{2}x^2+\frac{1}{5}xy\right).6xy^3\)
\(=3x^3y.6xy^3-\frac{1}{2}x^2.6xy^3+\frac{1}{5}xy.6xy^3\)
\(=18x^4y^4-3x^3y^3+\frac{6}{5}x^2y^4\)
(3x^3y-1/2x^2+1/5xy).6xy^3
3x^3y.6xy^3-1/2x^2.6xy^3+1/5xy.6xy^3
18x^4y^4-3x^3y^3+6/5x^2y^4