Hãy viết 10 từ chỉ sự vật, 10 từ chỉ hoạt động, 10 từ chỉ đặc điểm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có pt(1): \(mx+7=6\left(m\ne0\right)\)
\(\Leftrightarrow mx=6-7\)
\(\Leftrightarrow mx=-1\)
\(\Leftrightarrow x=-\dfrac{1}{m}\)
pt(2): \(\dfrac{x}{2+m}=1\left(m\ne-2\right)\)
\(\Leftrightarrow x=1\cdot\left(2+m\right)=m+2\)
Vì 2 pt có 2 nghiệm bằng nhau nên ta có:
\(-\dfrac{1}{m}=m+2\)
\(\Leftrightarrow-1=m\left(m+2\right)\)
\(\Leftrightarrow-1=m^2+2m\)
\(\Leftrightarrow m^2+2m+1=0\)
\(\Leftrightarrow\left(m+1\right)^2=0\)
\(\Leftrightarrow m+1=0\)
\(\Leftrightarrow m=-1\left(tm\right)\)
Vậy: ...
Xét S là tổng của nghịch đảo tất cả các số trên bảng.
Do \(c=\dfrac{a\times b}{a+b}\) nên \(\dfrac{1}{c}=\dfrac{a+b}{a\times b}=\dfrac{1}{a}+\dfrac{1}{b}\)
Vì vậy, khi xóa 2 số \(a,b\) và thay bằng số c thì S không đổi.
Khi đó, nếu số còn lại trên bảng là \(x\) thì \(\dfrac{1}{x}=\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{9}\) \(=\dfrac{7129}{2520}\) hay \(x=\dfrac{2520}{7129}\)
Vậy số còn lại trên bảng là \(\dfrac{2520}{7129}\)
Những cây thân mọng thường sống ở nơi khô hạn như hoang mạc...
Những cây thân mọng nước thường sống ở những nơi có khí hậu khô hạn, đó là các vùng sa mạc hoặc nơi có lượng mưa rất thấp
f; (\(x\) + 4).(\(x-2\)) = 0
\(\left[{}\begin{matrix}x+4=0\\x-2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-4; 2}
g; (\(x\) - 2).(\(x\) + 3) < 0
\(x\) - 2 = 0 ⇒ \(x\) = 2; \(x\) + 3 = 0 ⇒ \(x\) = -3
Lập bảng ta có:
\(x\) | - 3 2 |
\(x-2\) | - - 0 + |
\(x\) + 3 | - 0 + + |
(\(x-2\)).(\(x+3\)) | + 0 - 0 + |
Theo bảng trên ta có -3 < \(x\) < 2
Vậy -3 < \(x\) < 2
a) Vì \(p\) là snt lớn hơn 3 nên \(p⋮̸3\) \(\Rightarrow p^2\equiv1\left[3\right]\) hay \(p^2-1⋮3\)
b) Theo câu a), ta có \(p^2\equiv q^2\equiv1\left[3\right]\) nên \(p^2-q^2⋮3\)
c) Vì \(p,q\) là các snt lớn hơn 3 nên chúng cũng là các snt lẻ \(\Rightarrow p^2\equiv q^2\equiv1\left[8\right]\)
\(\Rightarrow p^2-q^2⋮8\)
Cho \(p=2,p=3\) ta thấy không thỏa mãn.
Cho \(p=5\) ta thấy thỏa mãn.
Xét \(p>5\), khi đó \(p⋮̸5\). Khi đó \(p^2\equiv1,4\left[5\right]\) (tính chất của scp)
Khi \(p^2\equiv1\left[5\right]\) thì \(p^2+1⋮5\), khi \(p^2\equiv4\left[5\right]\) thì \(p^2+6⋮5\) nên 1 trong 2 số này là hợp số, không thỏa mãn.
Vậy \(p=5\) là snt duy nhất thỏa mãn ycbt.
Đây là dạng toán nâng cao chuyên đề số nguyên tố, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau.
+ Nếu p = 2 ta có: p2 + 4 = 22 + 4 = 4 + 4 = 8 (loại)
+ Nếu p = 3 ta có: p2 + 6 = 32 + 6 = 9 + 6 = 15 (loại)
+ Nếu p = 5 ta có: p2 + 4 = 52 + 4 = 25 + 4 = 29 (thỏa mãn)
p2 + 6 = 52 + 6 = 25 + 6 = 31 (thỏa mãn)
+ Nếu p > 5 khi đó: p2 : 5 dư 1 hoặc 4 (tính chất số chính phương)
TH1 p2 : 5 dư 1 ⇒ p2 + 4 ⋮ 5 (là hợp số loại)
TH2 p2 : 5 dư 4 \(\Rightarrow\) p2 + 6 ⋮ 5 (là hợp số loại)
Từ những lập luận trên ta có:
p = 5 là giá trị số nguyên tố duy nhất thỏa mãn đề bài
Kết luận số nguyên tố thỏa mãn đề bài là 5.
Công cần để kéo gàu nước, lấy khối lượng ( 12 kg ) x g ( 10m/s2 )
Công cần để kéo gàu nước, lấy khối lượng ( 12 kg ) x g ( 10m/s2 )
+ 10 từ chỉ sự vật: Mặt trời, mặt trăng, bàn, ghế, bút, bảng, phấn, vở, sách; tủ
+ 10 từ chỉ hoạt động: Chạy, nhảy, cười, nói, khóc, nấu ăn, đọc sách, nghe nhạc, chơi cờ, đá bóng,
+ 10 từ chỉ đặc điểm: vui tính, chăm chỉ, ngoan ngoãn, lễ phép, sáng tạo, cần cù, siêng năng, tháo vát, bé bỏng, cao lớn.
+ 10 từ chỉ sự vật: Mặt trời, mặt trăng, bàn, ghế, bút, bảng, phấn, vở, sách; tủ
+ 10 từ chỉ hoạt động: Chạy, nhảy, cười, nói, khóc, nấu ăn, đọc sách, nghe nhạc, chơi cờ, đá bóng,
+ 10 từ chỉ đặc điểm: vui tính, chăm chỉ, ngoan ngoãn, lễ phép, sáng tạo, cần cù, siêng năng, tháo vát, bé bỏng, cao lớn.