K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 5

Từ đề bài ta suy ra trong 7 chữ số có đúng 1 chữ số có mặt 2 lần, 6 chữ số còn lại có mặt đúng 1 lần

Không gian mẫu: \(7.C_8^2.6!=141120\) số

TH1: chữ số có mặt 2 lần là chữ số lẻ.

Chọn chữ số lẻ lặp 2 lần có: 4 cách

Xếp vị trí cho 4 chữ số lẻ (có 1 số lặp 2 lần): \(C_5^2.3!=60\) cách

5 chữ số lẻ tạo thành 6 khe trống, xếp 3 chữ số chẵn vào 6 khe trống: \(A_6^3\) cách

TH2: chữ số có mặt 2 lần là chữ số chẵn.

Chọn chữ số chẵn có mặt 2 lần: 3 cách

Xếp vị trí cho 4 chữ số lẻ: \(4!\) cách

4 chữ số lẻ tạo thành 5 khe trống, chọn 2 vị trí cho chữ số chẵn lặp 2 lần: \(C_5^2\) cách

Xếp 3 chữ số chẵn còn lại: \(3!\) cách

\(\Rightarrow4.60.A_6^3+3.4!.C_5^2.3!=33120\) số

Xác suất: \(\dfrac{33120}{141120}=\dfrac{23}{98}\)

NV
4 tháng 5

Không gian mẫu: \(9.9.9.9.9=9^5\)

Chọn 3 chữ số từ 9 chữ số {1;2;...;9} có \(C_9^3\) cách

TH1: 1 chữ số lặp 3 lần, 2 chữ số có mặt 1 lần

Chọn 3 vị trí cho chữ số lặp 3 lần: \(C_5^3\) cách

Chọn 2 vị trí còn lại cho 2 chữ số kia: \(2!\) cách

TH2: 2 chữ số lặp 2 lần, 1 chữ số có mặt 1 lần

Chọn vị trí cho các chữ số lặp 2 lần: \(C_5^2.C_3^2\) cách

Còn lại 1 vị trí, có đúng 1 cách chọn cho chữ số còn lại

\(\Rightarrow C_9^3.\left(C_5^3.2!+C_5^3.C_3^2.1\right)\) số thỏa mãn

Xác suất: \(P=\dfrac{C_9^3.\left(C_5^3.2!+C_5^2.C_3^2.1\right)}{9^5}=\dfrac{1400}{19683}\)

NV
3 tháng 5

Các bộ số có tổng bằng 10 là: (1;4;5);(2;3;5);(1;2;3;4)

\(\Rightarrow\) Có \(3!+3!+4!=36\) số có tổng bằng 10

Không gian mẫu: \(A_5^2+A_5^3+A_5^4+A_5^5=320\)

Xác suấtL \(P=\dfrac{36}{320}=\dfrac{9}{80}\)

4 tháng 5

                   Giải:

Số có 4 chữ số có dạng: \(\overline{abcd}\)

Trong đó a; b; c; d lần lượt có số cách chọn là:  4; 3; 2; 1

Số các số có 4 chữ số khác nhau được lập từ các chữ số đã cho là:

        4 x 3 x 2 x 1 = 24 (số)

Đáp số: 24 số. 

 

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

b: ΔBAD=ΔBHD

=>DA=DH

Xét ΔDAK vuông tại A và ΔDHC vuông tại H có

DA=DH

AK=HC

Do đó: ΔDAK=ΔDHC

=>\(\widehat{ADK}=\widehat{HDC}\)

=>\(\widehat{ADK}+\widehat{ADH}=180^0\)

=>K,D,H thẳng hàng

3 tháng 5

- Viết được 24 số có 4 chữ cố khác nhau

- Các số đó là: 5897; 5879; 5987; 5978; 5789; 5798; 8975; 8957; 8759; 8795; 8579; 8597; 9587; 9578; 9758; 9785; 9875; 9857; 7589; 7598; 7985; 7958; 7859;7895.

- Tổng các số đó là:

5897 + 5879 + 5987 + 5978 + 5789 + 5798 + 8975 + 8957 + 8759 + 8795 + 8579 + 8597 + 9587 + 9578 + 9758 + 9785 + 9875 + 9857 + 7589 + 7598 + 7985 + 7958 + 7859 + 7895 = 193314

4 tháng 5

0,25 = 1/4

Hiệu số phần bằng nhau:

4 - 1 = 3 (phần)

Số lớn là:

24,9 : 3 × 4 = 33,2

Số bé là:

24,9 : 3 × 1 = 8,3

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

\(\widehat{ACB}\) chung

Do đó: ΔABC~ΔHAC

b: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{3^2+4^2}=5\)

ΔABC~ΔHAC

=>\(\dfrac{AB}{HA}=\dfrac{BC}{AC}\)

=>\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{3\cdot4}{5}=2,4\)

c: Xét ΔBAD vuông tại A và ΔBHE vuông tại H có

\(\widehat{ABD}=\widehat{HBE}\)

Do đó: ΔBAD~ΔBHE

=>\(\dfrac{BA}{BH}=\dfrac{AD}{HE}\)

=>\(\dfrac{AB}{AD}=\dfrac{HB}{HE}\)

3 tháng 5

Bạn cần giúp gì?

3 tháng 5

chúc bạn may mắn