Vẽ hình, ghi giải thích, kết luận và chứng minh các định lý sau
Cho góc AOB, góc AOC kề bù,Ox,Oy lần lượt là các tia phân giác góc AOB, góc AOC. Chứng minh ox vuông góc với oy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
12 ⋮ 2n - 1
`=>2n - 1∈Ư(12)`
`=>2n-1∈{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}`
Mà: `n ∈ nN=>2n-1` luôn là số lẻ
và: `2n-1>=-1`
`=>2n-1∈{-1;1;3}`
`=>2n∈{0;2;4}`
`=>n∈{0;1;2}`
Ta có:
+) \(12⋮\left(2n-1\right)\)
+) \(n\inℕ\Rightarrow\left(2n-1\right)\inℕ\)
Suy ra:
\(\left(2n-1\right)\inƯ\left(12\right)=\left\{1,2,3,4,6,12\right\}\)
\(\Rightarrow n\in\left\{1;1,5;2;2,5;3,5;6,5\right\}\)
Mà \(n\inℕ\) nên:
\(n\in\left\{1,2\right\}\)
Vậy \(n\in\left\{1,2\right\}\)
a.
Để A là phân số
\(\Rightarrow x+7\ne0\)
\(\Rightarrow x\ne7\)
b.
Để P nguyên \(\Rightarrow-\dfrac{3}{x+7}\) là số nguyên
\(\Rightarrow3\) chia hết `x+7`
\(\Rightarrow x+7\) là ước của 3
\(\Rightarrow x+7=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x=\left\{-10;-8;-6;-4\right\}\)
c.
\(P=-\dfrac{2}{3}\Rightarrow-\dfrac{3}{x+7}=-\dfrac{2}{3}\)
\(\Rightarrow\left(-3\right).\left(-3\right)=2.\left(x+7\right)\)
\(\Rightarrow9=2x+14\)
\(\Rightarrow2x=-5\)
\(\Rightarrow x=-\dfrac{5}{2}\)
\(2x\left(x-\dfrac{1}{7}\right)=0\)
\(2x=0\) hoặc \(x-\dfrac{1}{7}=0\)
\(x=0\) hoặc \(x=\dfrac{1}{7}\)
Một số tự nhiên chia 5 có thể có các số dư là 0,1,2,3,4
- Nếu số dư là 0 là thương là 0 thì số đó là: \(5.0+0=0\)
- Nếu số dư là 1 và thường là 1 thì số đó là: \(5.1+1=6\)
- Nếu số dư là 2 và thương là 2 thì số đó là: \(5.2+2=12\)
- Nếu số dư là 3 và thương là 3 thì số đó là: \(5.3+3=18\)
- Nếu số dư là 4 và thương là 4 thì số đó là: \(5.4+4=24\)
Vậy các số tự nhiên thỏa mãn là: 0, 6, 12, 18, 24
Ta có:
+)
\(\dfrac{2023.2024-1}{2023.2024}\\ =\dfrac{2023.2024}{2023.2024}-\dfrac{1}{2023.2024}\\ =1-\dfrac{1}{2023.2024}\)
+)
\(\dfrac{2022.2023-1}{2022.2023}\\ =\dfrac{2022.2023}{2022.2023}-\dfrac{1}{2022.2023}\\ =1-\dfrac{1}{2022.2023}\)
Nhận xét:
Vì \(2023.2024>2022.2023\) nên:
\(\dfrac{1}{2023.2024}< \dfrac{1}{2022.2023}\\\Rightarrow1-\dfrac{1}{2023.2024}>1-\dfrac{1}{2022.2023}\)
hay \(\dfrac{2023.2024-1}{2023.2024}>\dfrac{2022.2023-1}{2022.2023}\)
Vậy...
\(a,x^2=25\\ \Rightarrow x^2=5^2\\ \Rightarrow x=5\)
\(b,6\cdot x^2=150\\ \Rightarrow x^2=150:6\\ \Rightarrow x^2=25\\ \Rightarrow x^2=5^2\\ \Rightarrow x=5\)
a.
Ta có: \(\widehat{BAE}+\widehat{BAC}+\widehat{CAF}=180^0\)
\(\Rightarrow\widehat{BAE}+90^0+\widehat{CAF}=180^0\)
\(\Rightarrow\widehat{BAE}+\widehat{CAF}=90^0\) (1)
Lại có \(BE\perp d\Rightarrow\Delta BAE\) vuông tại E
\(\Rightarrow\widehat{BAE}+\widehat{ABE}=90^0\) (2)
(1);(2) \(\Rightarrow\widehat{CAF}=\widehat{ABE}\)
Xét hai tam giác ABE và CAF có:
\(\left\{{}\begin{matrix}\widehat{ABE}=\widehat{CAF}\\\widehat{AEB}=\widehat{CFA}=90^0\end{matrix}\right.\)
\(\Rightarrow\Delta ABE\sim\Delta CAF\left(g.g\right)\)
\(\Rightarrow\dfrac{AE}{CF}=\dfrac{BE}{AF}\Rightarrow AE.AF=BE.CF\)
b.
\(S_{ABC}=\dfrac{1}{2}AB.AC\Rightarrow AC=\dfrac{2S_{ABC}}{AB}=\dfrac{2.24}{6}=8\left(cm\right)\)
Áp dụng hệ thức lượng:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow AH=\dfrac{AB.AC}{\sqrt{AB^2+AC^2}}=\dfrac{6.8}{\sqrt{6^2+8^2}}=4,8\left(cm\right)\)
\(\left(3x\right)^2-9y^4=\left(3x\right)^2-\left(3y^2\right)^2=\left(3x-3y^2\right)\left(3x+3y^2\right)=9\left(x-y^2\right)\left(x+y^2\right)\)
\(16x^2-\left(y^2\right)^2=\left(4x\right)^2-\left(y^2\right)^2=\left(4x-y^2\right)\left(4x+y^2\right)\)
Ox,Oy lần lượt là phân giác của góc AOB,góc AOC
Ox là phân giác của góc BOA
=>\(\widehat{xOA}=\dfrac{\widehat{BOA}}{2}\)
Oy là phân giác của góc COA
=>\(\widehat{yOA}=\dfrac{\widehat{COA}}{2}\)
\(\widehat{xOy}=\widehat{xOA}+\widehat{yOA}=\dfrac{1}{2}\left(\widehat{BOA}+\widehat{COA}\right)\)
\(=\dfrac{1}{2}\cdot180^0=90^0\)
=>Ox\(\perp\)Oy