S= 2/3.4/5......4046/4047 so sánh S mũ 2 với 1/2024
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\dfrac{4}{3\cdot5}+\dfrac{4}{5\cdot7}+\dots+\dfrac{4}{97\cdot99}\)
\(=2\cdot\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dots+\dfrac{2}{97\cdot99}\right)\)
\(=2\cdot\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dots+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(=2\cdot\left(\dfrac{1}{3}-\dfrac{1}{99}\right)\)
\(=2\cdot\dfrac{32}{99}=\dfrac{64}{99}\)
\(D=\dfrac{18}{2\cdot5}+\dfrac{18}{5\cdot8}+\dots+\dfrac{18}{203\cdot206}\)
\(=6\cdot\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dots+\dfrac{3}{203\cdot206}\right)\)
\(=6\cdot\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dots+\dfrac{1}{203}-\dfrac{1}{206}\right)\)
\(=6\cdot\left(\dfrac{1}{2}-\dfrac{1}{206}\right)\)
\(=6\cdot\dfrac{51}{103}=\dfrac{306}{103}\)
Khi đó: \(\dfrac{C}{D}=\dfrac{\dfrac{64}{99}}{\dfrac{306}{103}}=\dfrac{3296}{15147}\)
\(10A=\dfrac{10^{11}+10}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\)
\(10B=\dfrac{10^{10}+10}{10^{10}+1}=1+\dfrac{9}{10^{10}+1}\)
\(10^{11}+1>10^{10}+1\)
=>\(\dfrac{9}{10^{11}+1}< \dfrac{9}{10^{10}+1}\)
=>\(\dfrac{9}{10^{11}+1}+1< \dfrac{9}{10^{10}+1}+1\)
=>10A<10B
=>A<B
A = \(\dfrac{10^{10}+1}{10^{11}+1}\) < \(\dfrac{10^{10}+1+9}{10^{11}+1+9}\) = \(\dfrac{10^{10}+10}{10^{11}+10}\) = \(\dfrac{10.\left(10^9+1\right)}{10.\left(10^{10}+1\right)}\) = B
Vậy A < B
\(M=\dfrac{1}{1\cdot5}+\dfrac{1}{5\cdot9}+...+\dfrac{1}{n\left(n+4\right)}\)
\(=\dfrac{1}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{n\left(n+4\right)}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{n}-\dfrac{1}{n+4}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{n+4}\right)=\dfrac{1}{4}\cdot\dfrac{n+4-1}{n+4}=\dfrac{n+3}{4\left(n+4\right)}\)
\(\dfrac{2}{3}\) + \(x+\dfrac{1}{4}\)\(x\) = - \(\dfrac{22}{27}\)
\(x+\dfrac{1}{4}x\) = - \(\dfrac{22}{27}\) - \(\dfrac{2}{3}\)
\(\dfrac{5}{4}x\) = - \(\dfrac{40}{27}\)
\(x=-\dfrac{40}{27}:\dfrac{5}{4}\)
\(x=-\dfrac{32}{27}\)
Vậy \(x=-\dfrac{32}{27}\)
Đặt A = 2 + 2² + 2³ + ... + 2²⁰
2A = 2² + 2³ + 2⁴ + ... + 2²¹
A = 2A - A
= (2² + 2³ + 2⁴ + ... + 2²¹) - (2 + 2² + 2² + ... + 2²⁰)
= 2²¹ - 2
= 2097150
A = 2 + 22 + 23 + ... + 220
2.A =2.(2 + 22 + 23 + ... + 220)
2A = 22 + 23 + 24 + ... + 221
2A - A = 22 + 23 + 24 + ... + 221 - (2 + 22 + 23 + ... + 220)
A = 22 + 23 + 24 + ... + 221 - 2 - 22 - ... - 220
A = (22 - 22) + (23 - 23) + ... + (221 - 2)
A = 0 + 0 + ... + 0 + 221 - 2
A = 221 - 2
(\(\dfrac{1}{5}\) + 2\(x\)).(3 - 2\(x\)) = 0
\(\left[{}\begin{matrix}\dfrac{1}{5}+2x=0\\3-2x=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=-\dfrac{1}{5}\\2x=3\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{-1}{5}:2\\x=\dfrac{3}{2}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\dfrac{1}{10}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\){ - \(\dfrac{1}{10}\); \(\dfrac{3}{2}\)}
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
...
\(\dfrac{1}{99^2}< \dfrac{1}{98\cdot99}=\dfrac{1}{98}-\dfrac{1}{99}\)
Do đó: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{99^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}\)
=>\(S< 1-\dfrac{1}{99}\)
=>S<1
\(\dfrac{1}{2^2}>\dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
\(\dfrac{1}{3^2}>\dfrac{1}{3\cdot4}=\dfrac{1}{3}-\dfrac{1}{4}\)
...
\(\dfrac{1}{99^2}>\dfrac{1}{99\cdot100}=\dfrac{1}{99}-\dfrac{1}{100}\)
Do đó: \(S>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
=>\(S>\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}\)
Do đó: \(\dfrac{49}{100}< S< 1\)
c: \(\dfrac{5\cdot4^6\cdot9^4-3^9\cdot\left(-8\right)^4}{4\cdot2^{13}\cdot3^8+2\cdot8^4\cdot\left(-27\right)^3}\)
\(=\dfrac{5\cdot2^{12}\cdot3^8-3^9\cdot2^{12}}{2^{15}\cdot3^8-2^{13}\cdot3^9}\)
\(=\dfrac{2^{12}\cdot3^8\left(5-3\right)}{2^{13}\cdot3^8\left(2^2-3\right)}=\dfrac{2^{13}}{2^{13}}=1\)
\(S=\dfrac{2}{3}\times\dfrac{4}{5}\times...\times\dfrac{4046}{4047}\)
\(S< \dfrac{3}{4}\times\dfrac{5}{6}\times...\times\dfrac{4047}{4048}\)
\(S^2< \dfrac{2}{3}\times\dfrac{4}{5}\times...\times\dfrac{4046}{4047}\times\left(\dfrac{3}{4}\times\dfrac{5}{6}\times...\times\dfrac{4047}{4048}\right)\)
\(S^2< \dfrac{2\times3\times4\times5\times...\times4046\times4047}{3\times4\times5\times6\times...\times4047\times4048}\)
\(S^2< \dfrac{2}{4048}\)
⇒ \(S^2< \dfrac{1}{2024}\)