K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 1

\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt[]{1+2x}\left(\sqrt[3]{3x+1}-\left(x+1\right)\right)+\left(x+1\right)\left(\sqrt[]{1+2x}-\left(x+1\right)\right)+x^2+\left(2x+1-\sqrt[]{4x+1}\right)}{1+x-\sqrt[]{2x+1}}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt[]{1+2x}.\dfrac{x^2\left(-x-3\right)}{\sqrt[3]{\left(3x+1\right)^2}+\sqrt[3]{3x+1}+1}+\dfrac{x^2.\left(x+1\right)}{\sqrt[]{1+2x}+x+1}+x^2+\dfrac{x^2}{2x+1+\sqrt[]{4x+1}}}{\dfrac{x^2}{1+x+\sqrt[]{2x+1}}}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{\left(-x-3\right)\sqrt[]{1+2x}}{\sqrt[3]{\left(3x+1\right)^2}+\sqrt[3]{3x+1}+1}+\dfrac{x+1}{\sqrt[]{1+2x}+x+1}+1+\dfrac{1}{2x+1+\sqrt[]{4x+1}}}{\dfrac{1}{1+x+\sqrt[]{2x+1}}}\)

\(=3\)

NV
7 tháng 1

\(log_{140}98=\dfrac{log_298}{log_2140}=\dfrac{log_2\left(2.7^2\right)}{log_2\left(2^2.5.7\right)}=\dfrac{log_22+2log_27}{2log_22+log_25+log_27}=\dfrac{1+2log_27}{2+a+log_27}\)

Ta có:

\(log_27=\dfrac{log_57}{log_52}=log_25.log_57=a.\left(\dfrac{log_37}{log_35}\right)=\dfrac{a}{log_35.log_73}=\dfrac{a}{bc}\)

\(\Rightarrow log_{140}98=\dfrac{1+\dfrac{2a}{bc}}{2+a+\dfrac{a}{bc}}=\dfrac{2a+bc}{a+2bc+abc}\)

7 tháng 1

có 28 viên bi đỏ,đổi 2 viên bi đỏ lấy 9 viên bi xanh,đổi 2 viên bi vàng.hỏi đổi được bao nhiêu viên bi vàng?

NV
4 tháng 1

a.

Do M là trung điểm SA, O là trung điểm AC

\(\Rightarrow OM\) là đường trung bình tam giác SAC \(\Rightarrow OM||SC\Rightarrow OM||\left(SBC\right)\) (1)

N là trung điểm CD, O là trung điểm AC \(\Rightarrow ON\) là đường trung bình ACD

\(\Rightarrow ON||AD\Rightarrow ON||BC\Rightarrow ON||\left(SBC\right)\) (2)

Mà \(ON\cap OM=O\)  ; \(OM;ON\in\left(OMN\right)\) (3)

(1);(2);(3) \(\Rightarrow\left(OMN\right)||\left(SBC\right)\)

b.

J cách đều AB, CD \(\Rightarrow J\) thuộc đường thẳng d qua O và song song AB, CD

- Nếu J trùng O \(\Rightarrow OI\) là đường trung bình tam giác SBD \(\Rightarrow OI||SB\Rightarrow OI||\left(SAB\right)\)

Hay \(IJ||\left(SAB\right)\)

- Nếu J không trùng O, ta có \(\left\{{}\begin{matrix}IO||SB\left(đtb\right)\Rightarrow IO||\left(SAB\right)\\d||AB\Rightarrow IJ||AB\Rightarrow OJ||\left(SAB\right)\end{matrix}\right.\)

\(\Rightarrow\left(OIJ\right)||\left(SAB\right)\Rightarrow IJ||\left(SAB\right)\)

a.

Do M là trung điểm SA, O là trung điểm AC

⇒�� là đường trung bình tam giác SAC ⇒��∣∣��⇒��∣∣(���) (1)

N là trung điểm CD, O là trung điểm AC ⇒�� là đường trung bình ACD

⇒��∣∣��⇒��∣∣��⇒��∣∣(���) (2)

Mà ��∩��=�  ; ��;��∈(���) (3)

(1);(2);(3) ⇒(���)∣∣(���)

b.

J cách đều AB, CD ⇒� thuộc đường thẳng d qua O và song song AB, CD

- Nếu J trùng O ⇒�� là đường trung bình tam giác SBD ⇒��∣∣��⇒��∣∣(���)

Hay ��∣∣(���)

- Nếu J không trùng O, ta có {��∣∣��(đ��)⇒��∣∣(���)�∣∣��⇒��∣∣��⇒��∣∣(���)

⇒(���)∣∣(���)⇒��∣∣(���)

NV
3 tháng 1

\(SM=MA=SA-SM\Rightarrow SM=\dfrac{1}{2}SA\)

Do IM song song SO, áp dụng định lý Talet trong tam giác SAO:

\(\dfrac{IO}{OA}=\dfrac{SM}{SA}=\dfrac{1}{2}\)

Do NK song song SO, áp dụng định lý Talet cho tam giác SCO:

\(\dfrac{OK}{OC}=\dfrac{SN}{SC}=\dfrac{1}{3}\)

Mà ABCD là hình bình hành nên \(OA=OC\)

\(\Rightarrow\dfrac{OI}{OK}=\dfrac{3}{2}\)

NV
2 tháng 1

Do M là trung điểm SD, N là trung điểm SC \(\Rightarrow MN\) là đường trung bình tam giác SCD

\(\Rightarrow MN||CD\) (1)

Tương tự PQ là đường trung bình tam giác SAB \(\Rightarrow PQ||AB\)

\(\Rightarrow MN||PQ\Rightarrow\) 4 điểm M, N, P, Q đồng phẳng

Lại có MQ là đường trung bình tam giác SAD \(\Rightarrow MQ||AD\)

Mà \(AD\in\left(ABCD\right)\Rightarrow MQ||\left(ABCD\right)\) 

Do \(CD\in\left(ABCD\right)\), từ \(\left(1\right)\Rightarrow MN||\left(ABCD\right)\) 

Mà \(\left\{{}\begin{matrix}MN\in\left(MNPQ\right)\\MQ\in\left(MNPQ\right)\\MN\cap MQ=M\end{matrix}\right.\)\(\Rightarrow\left(MNPQ\right)||\left(ABCD\right)\)