\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+2x}.\sqrt[3]{1+3x}-\sqrt{1+4x}}{1+x-\sqrt{1+2x}}=?\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(log_{140}98=\dfrac{log_298}{log_2140}=\dfrac{log_2\left(2.7^2\right)}{log_2\left(2^2.5.7\right)}=\dfrac{log_22+2log_27}{2log_22+log_25+log_27}=\dfrac{1+2log_27}{2+a+log_27}\)
Ta có:
\(log_27=\dfrac{log_57}{log_52}=log_25.log_57=a.\left(\dfrac{log_37}{log_35}\right)=\dfrac{a}{log_35.log_73}=\dfrac{a}{bc}\)
\(\Rightarrow log_{140}98=\dfrac{1+\dfrac{2a}{bc}}{2+a+\dfrac{a}{bc}}=\dfrac{2a+bc}{a+2bc+abc}\)
có 28 viên bi đỏ,đổi 2 viên bi đỏ lấy 9 viên bi xanh,đổi 2 viên bi vàng.hỏi đổi được bao nhiêu viên bi vàng?
a.
Do M là trung điểm SA, O là trung điểm AC
\(\Rightarrow OM\) là đường trung bình tam giác SAC \(\Rightarrow OM||SC\Rightarrow OM||\left(SBC\right)\) (1)
N là trung điểm CD, O là trung điểm AC \(\Rightarrow ON\) là đường trung bình ACD
\(\Rightarrow ON||AD\Rightarrow ON||BC\Rightarrow ON||\left(SBC\right)\) (2)
Mà \(ON\cap OM=O\) ; \(OM;ON\in\left(OMN\right)\) (3)
(1);(2);(3) \(\Rightarrow\left(OMN\right)||\left(SBC\right)\)
b.
J cách đều AB, CD \(\Rightarrow J\) thuộc đường thẳng d qua O và song song AB, CD
- Nếu J trùng O \(\Rightarrow OI\) là đường trung bình tam giác SBD \(\Rightarrow OI||SB\Rightarrow OI||\left(SAB\right)\)
Hay \(IJ||\left(SAB\right)\)
- Nếu J không trùng O, ta có \(\left\{{}\begin{matrix}IO||SB\left(đtb\right)\Rightarrow IO||\left(SAB\right)\\d||AB\Rightarrow IJ||AB\Rightarrow OJ||\left(SAB\right)\end{matrix}\right.\)
\(\Rightarrow\left(OIJ\right)||\left(SAB\right)\Rightarrow IJ||\left(SAB\right)\)
a.
Do M là trung điểm SA, O là trung điểm AC
là đường trung bình tam giác SAC (1)
N là trung điểm CD, O là trung điểm AC là đường trung bình ACD
(2)
Mà ; (3)
(1);(2);(3)
b.
J cách đều AB, CD thuộc đường thẳng d qua O và song song AB, CD
- Nếu J trùng O là đường trung bình tam giác SBD
Hay
- Nếu J không trùng O, ta có
\(SM=MA=SA-SM\Rightarrow SM=\dfrac{1}{2}SA\)
Do IM song song SO, áp dụng định lý Talet trong tam giác SAO:
\(\dfrac{IO}{OA}=\dfrac{SM}{SA}=\dfrac{1}{2}\)
Do NK song song SO, áp dụng định lý Talet cho tam giác SCO:
\(\dfrac{OK}{OC}=\dfrac{SN}{SC}=\dfrac{1}{3}\)
Mà ABCD là hình bình hành nên \(OA=OC\)
\(\Rightarrow\dfrac{OI}{OK}=\dfrac{3}{2}\)
Do M là trung điểm SD, N là trung điểm SC \(\Rightarrow MN\) là đường trung bình tam giác SCD
\(\Rightarrow MN||CD\) (1)
Tương tự PQ là đường trung bình tam giác SAB \(\Rightarrow PQ||AB\)
\(\Rightarrow MN||PQ\Rightarrow\) 4 điểm M, N, P, Q đồng phẳng
Lại có MQ là đường trung bình tam giác SAD \(\Rightarrow MQ||AD\)
Mà \(AD\in\left(ABCD\right)\Rightarrow MQ||\left(ABCD\right)\)
Do \(CD\in\left(ABCD\right)\), từ \(\left(1\right)\Rightarrow MN||\left(ABCD\right)\)
Mà \(\left\{{}\begin{matrix}MN\in\left(MNPQ\right)\\MQ\in\left(MNPQ\right)\\MN\cap MQ=M\end{matrix}\right.\)\(\Rightarrow\left(MNPQ\right)||\left(ABCD\right)\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt[]{1+2x}\left(\sqrt[3]{3x+1}-\left(x+1\right)\right)+\left(x+1\right)\left(\sqrt[]{1+2x}-\left(x+1\right)\right)+x^2+\left(2x+1-\sqrt[]{4x+1}\right)}{1+x-\sqrt[]{2x+1}}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt[]{1+2x}.\dfrac{x^2\left(-x-3\right)}{\sqrt[3]{\left(3x+1\right)^2}+\sqrt[3]{3x+1}+1}+\dfrac{x^2.\left(x+1\right)}{\sqrt[]{1+2x}+x+1}+x^2+\dfrac{x^2}{2x+1+\sqrt[]{4x+1}}}{\dfrac{x^2}{1+x+\sqrt[]{2x+1}}}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{\left(-x-3\right)\sqrt[]{1+2x}}{\sqrt[3]{\left(3x+1\right)^2}+\sqrt[3]{3x+1}+1}+\dfrac{x+1}{\sqrt[]{1+2x}+x+1}+1+\dfrac{1}{2x+1+\sqrt[]{4x+1}}}{\dfrac{1}{1+x+\sqrt[]{2x+1}}}\)
\(=3\)