K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3

loading...  

a) Sửa đề: Chứng minh ∆PMD = ∆PED

Do PD là tia phân giác của ∠MPN (gt)

⇒ ∠MPD = ∠EPD

Xét hai tam giác vuông: ∆PMD và ∆PED có:

PD là cạnh chung

∠MPD = ∠EPD (cmt)

⇒ ∆PMD = ∆PED (cạnh huyền - góc nhọn)

b) Do ∆PMD = ∆PED (cmt)

⇒ PM = PE (hai cạnh tương ứng)

⇒ ∆PEM cân tại P

⇒ ∠PEM = ∠PME

c) Do ∆PMD = ∆PED (cmt)

⇒ DM = DE (hai cạnh tương ứng)

∆DEN vuông tại E (do DE ⊥ PN)

⇒ DN là cạnh huyền nên là cạnh lớn nhất

⇒ DN > DE

Mà DE = DM (cmt)

⇒ DN > DM

14 tháng 3

25,016 : 2,36 = 10,6

14 tháng 3

25,016:2,36=10,6

1

Bài 5:

Thay x=1 và y=-2 vào Q, ta được:

\(Q=1^2\cdot\left(-2\right)-3\cdot1\cdot\left(-2\right)+2\cdot1\cdot\left(-2\right)^2-1\)

=-2+6+8-1

=4+8-1

=11

bài 4:

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

=>BA=BE

b: Ta có: ΔBAD=ΔBED

=>DA=DE

mà DE<DC(ΔDEC vuông tại E)

nên DA<DC
c: Ta có: ΔBHA vuông tại H

=>BH<BA

mà BA=BE(cmt)

nên BH<BE

mà BE<BC(E nằm giữa B và C)

nên BH<BE<BC

1

Bài 5:

Thay x=1 và y=-2 vào Q, ta được:

\(Q=1^2\cdot\left(-2\right)-3\cdot1\cdot\left(-2\right)+2\cdot1\cdot\left(-2\right)^2-1\)

=-2+6+8-1

=4+8-1

=11

bài 4:

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

=>BA=BE

b: Ta có: ΔBAD=ΔBED

=>DA=DE

mà DE<DC(ΔDEC vuông tại E)

nên DA<DC
c: Ta có: ΔBHA vuông tại H

=>BH<BA

mà BA=BE(cmt)

nên BH<BE

mà BE<BC(E nằm giữa B và C)

nên BH<BE<BC

a: \(M\left(x\right)=-2x^4-5x^3+3x-x^2+5+x^2+x^4-x^3+4-2x+x^2\)

\(=\left(-2x^4+x^4\right)+\left(-5x^3-x^3\right)+\left(-x^2+x^2+x^2\right)+\left(3x-2x\right)+9\)

\(=-x^4-6x^3+x^2+x+9\)

\(=9+x+x^2-6x^3-x^4\)

b: Bậc là 4

Hệ số cao nhất là -1

Hệ số tự do là 9

c: \(M\left(1\right)=-1^4-6\cdot1^3+1^2+1+9\)

=-1-6+1+1+9

=-6+1+9

=-5+9

=4

\(M\left(-1\right)=9+\left(-1\right)+\left(-1\right)^2-6\cdot\left(-1\right)^3-\left(-1\right)^4\)

=9-1+1+6-1

=9+6-1

=14

\(M\left(2\right)=9+2+2^2-6\cdot2^3-2^4\)

=11+4-48-16

=-48-1

=-49

\(M\left(-2\right)=9+\left(-2\right)+\left(-2\right)^2-6\cdot\left(-2\right)^3-\left(-2\right)^4\)

=9-2+4+48-16

=43

Gọi số máy tính đơn vị hảo tâm đã tặng cho trường thứ nhất, trường thứ hai, trường thứ ba lần lượt là a(máy),b(máy),c(máy)

(Điều kiện: \(a,b,c\in Z^+\))

Số máy tỉ lệ với 2;3;4 nên \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)

Tổng số máy là 54 máy nên a+b+c=54

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{54}{9}=6\)

=>\(a=6\cdot2=12;b=6\cdot3=18;c=4\cdot6=24\)

Vậy: số máy tính đơn vị hảo tâm đã tặng cho trường thứ nhất, trường thứ hai, trường thứ ba lần lượt là 12 máy; 18 máy; 24 máy

Tổng số học sinh của trường là:

\(360+455\cdot4=2180\left(bạn\right)\)

Trung bình mỗi khối có:

2180:5=436(bạn)

16 tháng 3

                  Bài giải 

Có tất cả số lớp là:                             4+1=5 (lớp)

Trung bình cộng số học sinh của một lớp là:                    (360+445):5=161(học sinh)

                                     Đáp số: 161 học sinh.

Gọi số sách trong mỗi ngăn của tủ A là x(quyển)

(Điều kiện: \(x\in Z^+\))

Số sách trong mỗi ngăn của tủ B là 2x(quyển)

Số sách của tủ A là \(x\cdot5=5x\left(quyển\right)\)

Số sách của tủ B là \(2x\cdot7=14x\left(quyển\right)\)

Số sách ở tủ A nếu bớt đi mỗi ngăn 3 quyển là:

5(x-3)(quyển)

Số sách ở tủ B nếu bớt đi mỗi ngăn 12 quyển là:

14(x-12)(quyển)

Khi tủ A bớt đi mỗi ngăn 3 quyển và tủ B bớt đi mỗi ngăn 12 quyển thì số sách của hai tủ bằng nhau nên ta có:

14(x-12)=5(x-3)
=>14x-168=5x-15

=>14x-5x=-15+168

=>9x=153

=>x=153:9=17(nhận)

vậy: Số sách ở tủ A là \(17\cdot5=85\left(quyển\right)\)

Số sách ở tủ B là \(14\cdot17=238\left(quyển\right)\)