K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Hai cặp tia đối nhau góc A là:

Ax,Ay

Ax,AO

b: Ax và Bx không trùng nhau vì chúng không có chung góc

Diện tích xung quanh của hình lập phương là:

2,94:1,5=1,96(m2)

NV
9 tháng 5

a.

Để (a) song song (b) \(\Leftrightarrow\left\{{}\begin{matrix}2m=1\\-1\ne2\end{matrix}\right.\)

\(\Rightarrow m=\dfrac{1}{2}\)

b.

Gọi A là giao điểm của (C) với trục hoành

\(\Rightarrow x_A-2=0\Rightarrow x_A=2\)

\(\Rightarrow A\left(2;0\right)\)

Để (a) cắt (c) tại 1 điểm thuộc trục hoành \(\Rightarrow\) (a) đi qua A

Thay tọa độ A vào pt (a) ta được:

\(2m.2-1=0\)

\(\Rightarrow m=\dfrac{1}{4}\)

NV
9 tháng 5

Gọi số tuổi của Nam hiện tại là x tuôi (với 0<x<62)

Do tuổi của Nam và ba cộng lại là 62 nên tuổi của ba hiện tại là: \(62-x\) tuổi

Tuổi của Nam 7 năm nữa là: \(x+7\)

Tuổi của ba Nam 7 năm sau nữa là: \(62-x+7=69-x\)

Do 7 năm sau tuổi của ba gấp 3 lần tuổi Nam nên ta có pt:

\(69-x=3\left(x+7\right)\)

\(\Leftrightarrow69-x=3x+21\)

\(\Leftrightarrow4x=48\)

\(\Leftrightarrow x=12\)

Vậy năm nay Nam 12 tuổi

NV
9 tháng 5

Do I là trung điểm MN \(\Rightarrow OI\perp MN\)  \(\Rightarrow\widehat{OIA}=90^0\)

Do AB, AC là các tiếp tuyến \(\Rightarrow\widehat{OBA}=\widehat{OCA}=90^0\)

\(\Rightarrow I,B,C\) cùng nhìn OA dưới 1 góc vuông nên 5 điểm O, I, B, A, C cùng thuộc 1 đường tròn đường kính OA

Theo t/c 2 tiếp tuyến cắt nhau ta có: \(AB=AC\)

\(\Rightarrow\widehat{BIA}=\widehat{CIA}\) (2 góc nt chắn 2 cung bằng nhau của đường trònđường kính OA)

\(\Rightarrow IA\) là phân giác của BIC

NV
9 tháng 5

loading...

9 tháng 5

Vì N nằm giữa P và Q nên:

PN+NQ=PQ

       NQ=PQ-PN

             =10-3=7(cm)

Vì I là trung điểm cuả NQ nên:

NI=IQ=1/2NQ=1/2.7=3,5(cm) 

                    Đáp số:NQ=3,5cm

9 tháng 5

Vì N nằm giữa P và Q nên:

PN+NQ=PQ

       NQ=PQ-PN

             =10-3=7(cm)

Vì I là trung điểm cuả NQ nên:

NI=IQ=1/2NQ=1/2.7=3,5(cm) 

                    Đáp số:NQ=3,5cm

Câu 15;

a: \(A=\dfrac{10^8+2}{10^8-1}=\dfrac{10^8-1+3}{10^8-1}=1+\dfrac{3}{10^8-1}\)

\(B=\dfrac{10^8}{10^8-3}=\dfrac{10^8-3+3}{10^8-3}=1+\dfrac{3}{10^8-3}\)

Ta có: \(10^8-1>10^8-3\)

=>\(\dfrac{3}{10^8-1}< \dfrac{3}{10^8-3}\)

=>\(\dfrac{3}{10^8-1}+1< \dfrac{3}{10^8-3}+1\)

=>A<B

b: \(M=\dfrac{2^2}{1\cdot3}+\dfrac{2^2}{3\cdot5}+...+\dfrac{2^2}{197\cdot199}\)

\(=2\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{197\cdot199}\right)\)

\(=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{197}-\dfrac{1}{199}\right)\)

\(=2\left(1-\dfrac{1}{199}\right)=2\cdot\dfrac{198}{199}=\dfrac{396}{199}\)

9 tháng 5

em can cach giai

 

9 tháng 5

Số số hạng của S:

100 - 51 + 1 = 50 (số)

Ta có:

1/51 > 1/100

1/52 > 1/100

1/53 > 1/100

...

1/99 > 1/100

1/100 = 1/100

Cộng vế với vế, ta có:

S > 1/100 + 1/100 + 1/100 + ... + 1/100 (50 số 1/100)

= 50/100

= 1/2

Vậy S > 1/2

9 tháng 5

S = \(\dfrac{1}{51}\) + \(\dfrac{1}{52}\) + \(\dfrac{1}{53}\) +...+\(\dfrac{1}{98}\) + \(\dfrac{1}{100}\)

Tổng S có số phân số là: (100 - 51) : 1 + 1  = 50

Mặt khác ta có: \(\dfrac{1}{51}\) > \(\dfrac{1}{52}\) > \(\dfrac{1}{53}\)> ...> \(\dfrac{1}{100}\) 

     ⇒ \(\dfrac{1}{51}\) + \(\dfrac{1}{52}\) + \(\dfrac{1}{53}\) + ... + \(\dfrac{1}{100}\) > \(\dfrac{1}{100}\) + \(\dfrac{1}{100}\)+...+ \(\dfrac{1}{100}\)

         \(\dfrac{1}{51}\) + \(\dfrac{1}{52}\) + \(\dfrac{1}{53}\) + ... + \(\dfrac{1}{100}\) > \(\dfrac{1}{100}\) x 50

         \(\dfrac{1}{51}\) + \(\dfrac{1}{52}\) + \(\dfrac{1}{53}\) + ... + \(\dfrac{1}{100}\) > \(\dfrac{1}{2}\)

 Vậy S = \(\dfrac{1}{51}\) + \(\dfrac{1}{52}\) + \(\dfrac{1}{53}\) + ... + \(\dfrac{1}{100}\) > \(\dfrac{1}{2}\)

 

a: Xét ΔAMB vuông tại M và ΔAKC vuông tại K có

\(\widehat{MAB}\) chung

Do đó: ΔAMB~ΔAKC

b: ΔAMB~ΔAKC

=>\(\dfrac{AM}{AK}=\dfrac{AB}{AC}\)

=>\(\dfrac{AM}{AB}=\dfrac{AK}{AC}\)

Xét ΔAMK và ΔABC có

\(\dfrac{AM}{AB}=\dfrac{AK}{AC}\)

\(\widehat{MAK}\) chung

Do đó: ΔAMK~ΔABC

=>\(\widehat{AMK}=\widehat{ABC}\)

c: Xét ΔABC có

BM,CK là các đường cao

BM cắt CK tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại D

Xét ΔBDH vuông tại D và ΔBMC vuông tại M có

\(\widehat{DBH}\) chung

Do đó: ΔBDH~ΔBMC

=>\(\dfrac{BD}{BM}=\dfrac{BH}{BC}\)

=>\(BH\cdot BM=BD\cdot BC\)

Xét ΔCDH vuông tại D và ΔCKB vuông tại K có

\(\widehat{DCH}\) chung

Do đó: ΔCDH~ΔCKB

=>\(\dfrac{CD}{CK}=\dfrac{CH}{CB}\)

=>\(CD\cdot CB=CH\cdot CK\)

\(BH\cdot BM+CH\cdot CK\)

\(=BD\cdot BC+CD\cdot BC=BC\left(BD+CD\right)=BC^2\)