Cho nửa đường tròn $(O)$ đường kính $AB$. $M$ là điểm tùy ý trên nửa đường tròn ($M$ khác $A$ và $B$). Kẻ \(MH\perp AB\) \(\left(H\in AB\right)\). Trên cùng nửa mặt phẳng bờ $AB$ chứa nửa đường tròn $(O)$, vẽ hai nửa đường tròn tâm \(O_1\) đường kính $AH$ và tâm \(O_2\) đường kính $BH$. $MA$ và $MB$ cắt hai nửa đường tròn \(\left(O_1\right)\) và \(\left(O_2\right)\) lần lượt tại $P$ và $Q$.
a) Chứng minh rằng $MH = PQ$.
b) Chứng minh tứ giác $PQBA$ nội tiếp.
c) Chứng minh $PQ$ là tiếp tuyến chung của hai nửa đường tròn \(\left(O_1\right)\) và \(\left(O_2\right)\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình bạn tự vẽ nha :
a.Ta có:
đường tròn đường kính
b.Từ câu a
Mà đều,
Do
đều
là hình thoi
a) Có nên 5 điểm A, P, M, H, Q cùng thuộc đường tròn đường kính AM.
b) Vì AH là đường cao của tam giác đều ABC nên .
Vì A, P, M, H, Q cùng nằm trên đường tròn tâm O nên OP = OH = OQ = OM và ; suy ra OPH và OQH là hai tam giác đều, do đó OQHP là hình thoi.
c) Gọi r là bán kính đường tròn ngoại tiếp đa giác APMHQ thì AM = 2r và OPH, OQH là hai tam giác đều cạnh r. Do đó
Do đó PQ ngắn nhất khi và chỉ khi M là trung điểm BC.
Theo giả thuyết suy ra các cung bằng nhau :
\(\widebat{AD}=\widebat{AF}=\widebat{DB}=\widebat{FC}\)
Do đó \(\widehat{A_1}=\widehat{B_1}\)mà 2 góc ở vị trí sole trong \(\Rightarrow AD//EF\) \(\left(1\right)\)
\(\widehat{A_2}=\widehat{C}_1\) mà 2 góc ở vị trí sole trong \(\Rightarrow AF//CD\) \(\left(2\right)\)
và \(AD=EF\) \(\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow\)ADEF là hình thoi
Giải thích các bước giải:
Đổi
Gọi quãng đường là
Thời gian đi là Thời gian về là
Ta có tổng thời gian đi và về là
Nửa chu vi miếng đất hình chữ nhật là:
Gọi chiều dài miếng đất là:
chiều rộng miếng đất là:
Miếng đất hình chữ nhật có nửa chu vi là .
⇒ Phương trình:
5 lần chiều rộng hơn 2 lần chiều dài 40m.
⇒ Phương trình:
Từ và ta có hệ phương trình:
⇔
⇔
⇔
⇔
⇔
⇔
Vậy miếng đất hình chữ nhật có chiều dài là và chiều rộng .
Gọi chiều rộng mảnh đất hình chữ nhật là x (m) (x>0)
=> chiều dài mảnh đất là x+6 (m)
Theo định lý Pytago ta có độ dài đường chéo là:
Vậy diện tích mảnh đất là
Gọi chiều dài hình chữ nhật là x thì chiều rộng là \(\frac{720}{x}\left(x>0\right)\left(m\right)\)
\(\Leftrightarrow720-6x+\frac{7200}{x}-60=720\)
\(\Leftrightarrow6x^2-7200+60x=0\)
\(\Leftrightarrow x^2+10x-1200=0\)
\(\Leftrightarrow x^2+40x-30x-1200=0\)
\(\Leftrightarrow x\left(x+40\right)-30\left(x+40\right)=0\)
\(\Leftrightarrow\left(x+40\right)\left(x-30\right)=0\)
\(\Leftrightarrow x=30\)vì \(x>0\)
Vậy chiều dài là\(30m\), chiều rộng là \(\frac{720}{30}=24m\)
a) Vì AH, HB, AB đều là các đường kính của các nửa đường tròn (O1) , (O2) và (O) nên tứ giác MPHQ có ba góc P, Q, M vuông. Vì vậy nó là hình chữ nhật.
Từ đó, ta có HM = PQ.
b) Vì MHPQ là hình chữ nhật nên \widehat{MPQ}=\widehat{MHQ}=\widehat{MBH}\left(=\dfrac{\stackrel\frown{HQ}}{2}\right)MPQ=MHQ=MBH(=2HQ⌢), do đó APQB là tứ giác nội tiếp.
c) Ta có \widehat{O_1PA}=\widehat{PAO_1}=90^o-\widehat{HMP}=90^o-\widehat{MPQ}O1PA=PAO1=90o−HMP=90o−MPQ
\Rightarrow\widehat{O_1PA}+\widehat{MPQ}=90^o\Rightarrow\widehat{O_1PQ}=90^o⇒O1PA+MPQ=90o⇒O1PQ=90o nên PQ tiếp xúc nửa đường tròn (O1) tại P.
Tương tự , PQ tiếp xúc (O2) tại Q hay PQ là tiếp tuyến chung của hai nửa đường tròn (O1) và (O2)