K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2x^2-7x+3=0\Leftrightarrow2x^2-x-6x+3=0\Leftrightarrow x\left(2x-1\right)-3\left(2x-1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x-3=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}}\)

\(2x^2-7x+3=0\Leftrightarrow x=\frac{-1\pm\sqrt{119}t}{12}\)

hoặc bn cho là vô nghiệm cx đc

\(16x^2+24x+9=0\Leftrightarrow\left(4x+3\right)^2=0\Leftrightarrow4x+3=0\Leftrightarrow x=-\frac{3}{4}\)

24 tháng 4 2020

\(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)

\(=-10\sqrt{2}+5-18-5\cdot2\cdot3\sqrt{2}+25\)

\(=-10\sqrt{2}-30\sqrt{2}+12\)

\(=12-40\sqrt{2}\)

23 tháng 4 2020

giúp mik với mn

24 tháng 4 2020

hpt \(\Leftrightarrow\)\(\hept{\begin{cases}5\left(x+y\right)^2+\frac{2}{\left(x+y\right)^2}-12xy=\frac{251}{5}\\\frac{\left(x+y\right)^2+1}{x+y}=5-\left(x-y\right)\end{cases}}\) (*) 

đặt \(\left(a;b\right)=\left(x+y;x-y\right)\)\(\left(a\ne0\right)\)

hệ (*) \(\Leftrightarrow\)\(\hept{\begin{cases}5a^2+\frac{2}{a^2}-3\left(a^2-b^2\right)=\frac{251}{5}\\b=5-\frac{a^2+1}{a}\end{cases}}\Leftrightarrow\hept{\begin{cases}25a^4-150a^3+154a^2-150a+25=0\left(1\right)\\b=5-\frac{a^2+1}{a}\end{cases}}\)

pt (1) \(\Leftrightarrow\)\(\orbr{\begin{cases}a=\frac{1}{5}\Rightarrow b=\frac{-1}{5}\\a=5\Rightarrow b=\frac{-1}{5}\end{cases}}\)\(\Rightarrow\)\(\left(x;y\right)=\left\{\left(0;\frac{1}{5}\right);\left(\frac{12}{5};\frac{13}{5}\right)\right\}\)

24 tháng 4 2020

Theo đề bài: 

 \(\left(x+\sqrt{x^2+\sqrt{2020}}\right)\left(y+\sqrt{y^2+\sqrt{2020}}\right)=\sqrt{2020}\)(1)

Lại có: \(\left(x+\sqrt{x^2+\sqrt{2020}}\right)\left(\sqrt{x^2+\sqrt{2020}}-x\right)=\sqrt{2020}\)(2)

Và \(\left(\sqrt{y^2+\sqrt{2020}}-y\right)\left(y+\sqrt{y^2+\sqrt{2020}}\right)=\sqrt{2020}\)(3)

Từ (1) và (3) => \(x+\sqrt{x^2+\sqrt{2020}}=\sqrt{y^2+\sqrt{2020}}-y\)

<=> \(x+y=-\sqrt{x^2+\sqrt{2020}}+\sqrt{y^2+\sqrt{2020}}\)(4)

Từ (1) và (2) => \(\sqrt{x^2+\sqrt{2020}}-x=\sqrt{y^2+\sqrt{2020}}+y\)

<=> \(x+y=\sqrt{x^2+\sqrt{2020}}-\sqrt{y^2+\sqrt{2020}}\)(5) 

Từ (4) ( 5 ) => x + y = - ( x + y ) <=> x = - y 

=> \(M=9x^4+7x^4-12x^2+4x^2+5\)

\(=16x^4-8x^2+5=\left(4x^2-1\right)^2+4\ge4\)

Dấu "=" xảy ra <=> \(4x^2-1=0\)<=> \(x=\pm\frac{1}{2}\)

Với x = 1/2 => (x; y) = ( 1/2; -1/2) 

Với x = -1/2 => ( x; y ) = ( -1/2; 1/2) 

Vậy min M = 4 đạt tại ....

24 tháng 4 2020

A E B C O D

24 tháng 4 2020

Ta có AB,AC là tiếp tuyến của (O)

\(\Rightarrow AB\perp OB,AC\perp OC,AO\perp CB\)

\(\Rightarrow ABOC\) nội tiếp đường tròn đường kính AO (1)

Vì \(BD\perp BC\Rightarrow AO//DE\left(\perp BC\right)\Rightarrow\widehat{DBC}=90^0\) = > CD là đường kính của (O) 

Mà \(EO\perp CD,BC\perp DE\Rightarrow\widehat{EBC}=\widehat{EOC}=90^0\)

\(\Rightarrow ECOB\) nội tiếp (2) 

Từ (1) , (2) \(\Rightarrow A,E,B,O,C\)  nội tiếp đường tròn đường kính AO

\(\Rightarrow EAOB\) nội tiếp 

\(\Rightarrow\widehat{EAO}+\widehat{EBO}=180^0\)

Mà \(\widehat{EBO}+\widehat{BOA}=180^0\left(BE//AO\right)\)

\(\Rightarrow\widehat{EAO}=\widehat{BOA}\)

\(\Rightarrow AOBE\)  là hình thang cân