K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3

loading... 

26 tháng 3

a) Ta có :

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\)

\(\Rightarrow k^3=\dfrac{x}{3}.\dfrac{y}{4}.\dfrac{z}{5}=\dfrac{480}{3.4.5}=8\)

\(\Rightarrow k=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=2\\\dfrac{y}{4}=2\\\dfrac{z}{5}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=6\\y=8\\z=10\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=6\\y=8\\z=10\end{matrix}\right.\)

b) Ta có :

\(\dfrac{a}{4}=\dfrac{b}{8}=\dfrac{c}{16}\)

\(\Rightarrow\left(\dfrac{a}{4}\right)^2=\left(\dfrac{b}{8}\right)^2=\left(\dfrac{c}{16}\right)^2\)

\(\Rightarrow\dfrac{a^2}{16}=\dfrac{b^2}{64}=\dfrac{c^2}{256}\)

Áp dụng TCDTSBN, ta có :

\(\dfrac{a^2}{16}=\dfrac{b^2}{64}=\dfrac{c^2}{256}=\dfrac{a^2-b^2}{16-64}=\dfrac{-60}{-48}=\dfrac{5}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a^2}{16}=\dfrac{5}{4}\\\dfrac{b^2}{64}=\dfrac{5}{4}\\\dfrac{c^2}{256}=\dfrac{5}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2=4.5\\b^2=16.5\\c^2=256.5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=\pm2\sqrt[]{5}\\b=\pm4\sqrt[]{5}\\c=\pm16\sqrt[]{5}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=\pm2\sqrt[]{5}\\b=\pm4\sqrt[]{5}\\c=\pm16\sqrt[]{5}\end{matrix}\right.\)

26 tháng 3

a) Áp dụng TCDTSBN, ta có :

\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{4}=\dfrac{2x-4y+z}{1.2-4.2+4}=\dfrac{-6}{-2}=3\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{1}=3\\\dfrac{y}{2}=3\\\dfrac{z}{4}=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=12\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=3\\y=6\\z=12\end{matrix}\right.\)

b) Áp dụng TCDTSBN, ta có :

\(\dfrac{a}{2}=\dfrac{b}{-4}=\dfrac{c}{6}=\dfrac{a-5b+4c}{2-5.\left(-4\right)+4.6}=\dfrac{23}{46}=\dfrac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=\dfrac{1}{2}\\\dfrac{b}{-4}=\dfrac{1}{2}\\\dfrac{c}{4}=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=2\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=1\\b=-2\\c=2\end{matrix}\right.\)

26 tháng 3

A B C H K I M

a/

Xét tg vuông AHB và tg vuông AHC có

AB = AC (cạnh bên tg cân)

HB = HC (trong tg cân đường cao hạ từ đỉnh tg cân đồng thời là đường trung tuyến)

=> tg AHB = tg AHC (Hai tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)

b/

Xét tg ABC có

HB = HC (cmt); HK//AB (gt) => KA=KC (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)

Xét tg vuông AHC có

KA=KC (cmt)

\(\Rightarrow HK=KA=KC=\dfrac{AC}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> tg AHK cân tại K

c/

Xét tg vuông ABC có

HB=HC (cmt); KA=KC (cmt) => I là trọng tâm của tg ABC 

=> CI là trung uyến của tg ABC (trong tg 3 đường trung tuyến đồng quy) \(\Rightarrow M\in CI\) => C, I, M thẳng hàng

 

 

  loading...  loading...  loading...  

26 tháng 3

A B C M A'

Kéo dài AM cắt BC tại A'.

Xét ΔABA' ta có BĐT: AB + BA' > AA' = MA + MA'

                            hay AB + BA' > MA + MA'  (1)

Xét ΔCMA' ta có BĐT:    CA' > MC - MA' (2)  Cộng theo vế (1) và (2) ta được:

(AB + BA' ) + CA'  > ( MA + MA' ) + ( MC - MA' )  <===> AB + (BA' + CA') > MA + MC

Hay:  AB + CB > MA + MC  (I)  Chứng minh tương tự ta có:

         AB + AC > MB + MC  (II)

         CB + AC > MA + MB  (III) Cộng theo vế (I),(II) và (III) ta được:

2(AB+AC+CB) > 2(MA + MB + MC) 

Hay: MA+MB+MC < AB+AC+CB    (đpcm).

 

26 tháng 3

Số nguyên dương này không thể xác định vì số chữ số của số đó chưa xác định là bao nhiêu.

26 tháng 3

Đây là bài Hình học phẳng thuộc thể loại tương đối khó và TUYỆT HAY. Có thể được dùng làm bài mẫu để dạy các học sinh chuyên toán cách phân tích, tư duy để giải một bài toán Hình học phẳng thuộc dạng "đề bài mông lung" (tức là học trò kg biết bắt đầu từ đâu và phải làm gì).

Nếu trong vòng 1 ngày nữa kg có bạn nào post lời giải lên, tôi sẽ giúp bạn.

26 tháng 3

 Kẻ trung tuyến AM của tam giác ABC. Qua B kẻ đường thẳng vuông góc với AB cắt AM tại H. Hạ \(DK\perp AM\) tại K. Khi đó H là điểm cố định.

 Vì \(EF=MB=\dfrac{1}{2}BC\) nên \(BF=ME\). Từ đó dễ dàng chứng minh \(\Delta FDB=\Delta MKE\left(c.g.c\right)\) \(\Rightarrow\widehat{DBE}=\widehat{KEB}\). Đồng thời DK//BE nên tứ giác BDKE là hình thang cân \(\Rightarrow\) BDKE là tứ giác nội tiếp.

 Lại có \(\Delta BFD\sim\Delta BMA\) mà \(\Delta BFD=\Delta EMK,\Delta BMA=\Delta CMA\)

 nên \(\Delta EMK\sim\Delta CMA\)

 \(\Rightarrow\widehat{MEK}=\widehat{MCA}\)

 Lại có tứ giác ABHC nội tiếp (do \(\widehat{ABH}=\widehat{ACH}=90^o\)) nên \(\widehat{MCA}=\widehat{BHA}=\widehat{BHK}\)

 Do đó \(\widehat{BEK}=\widehat{BHK}\) \(\Rightarrow\) Tứ giác BHEK nội tiếp.

 Từ đó suy ra 5 điểm B, H, E, K, D cùng thuộc đường tròn (DH). (Trong trường hợp hình vẽ mà \(\widehat{BEK}+\widehat{BHK}=180^o\) thì cũng chứng minh được 5 điểm đó cùng thuộc đường tròn (DH))

 \(\Rightarrow\widehat{DEH}=90^o\)

 \(\Rightarrow\) đường thẳng qua E vuông góc với DE đi qua điểm H cố định. Ta có đpcm.

27 tháng 3

a) Xét đường tròn (O1) có AB tiếp xúc với (O1) tại B nên \(\widehat{ABD}=\widehat{BED}\) (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn \(\stackrel\frown{BD}\))

 Tương tự, ta có \(\widehat{ACD}=\widehat{DEC}\)

 Cộng theo vế 2 đẳng thức vừa tìm được, ta có:

 \(\widehat{ABD}+\widehat{ACD}=\widehat{BEC}\)

 \(\Rightarrow180^o-\widehat{BAC}=\widehat{BEC}\)

 \(\Rightarrow\widehat{BEC}+\widehat{BAC}=180^o\)

 \(\Rightarrow\) Tứ giác ABEC nội tiếp đường tròn (đpcm)

b) Gọi T là giao điểm của DE với (O)

Trong đường tròn (O2), ta có \(\widehat{BDE}=180^o-\widehat{CDE}=180^o-\dfrac{sđ\stackrel\frown{CE}_{lớn}}{2}\) \(=\dfrac{360^o-sđ\stackrel\frown{CE}_{lớn}}{2}\) \(=\dfrac{sđ\stackrel\frown{CE}_{nhỏ}}{2}\)  \(=\widehat{ACE}\)

 Trong đường tròn (O), ta có \(\widehat{ACE}=\dfrac{sđ\stackrel\frown{AE}}{2}\)

 Lại có \(\widehat{BDE}=\dfrac{sđ\stackrel\frown{BE}+sđ\stackrel\frown{CT}}{2}\) 

\(\Rightarrow\dfrac{sđ\stackrel\frown{AE}}{2}=\dfrac{sđ\stackrel\frown{BE}+sđ\stackrel\frown{CT}}{2}\)

 \(\Rightarrow sđ\stackrel\frown{AB}=sđ\stackrel\frown{CT}\)

 \(\Rightarrow\) AT//CB

 Do đó T là điểm cố định \(\Rightarrow\) DE đi qua T cố định.

 

 

26 tháng 3

Bạn vào trang cá nhân của mình xem trả lời nhé.

25 tháng 3

Tóm tắt :

Thể tích : 729 m3

Cạnh : ..... m ?

                            Bài giải

Vì 729 = 9 x 9 x 9 nên cạnh của hình lập phương đó là : 9 m .

                       Đáp số : 9 m

Độ dài cạnh hình lập phương là:

\(\sqrt[3]{729}=9\left(m\right)\)

Gọi tử số ban đầu là x

(ĐK: x<>-5)

Mẫu số ban đầu là x+5

Khi tăng cả tử và mẫu thêm 5 đơn vị thì được phân số mới là 2/3 nên ta có:

\(\dfrac{x+5}{x+5+5}=\dfrac{2}{3}\)

=>\(\dfrac{x+5}{x+10}=\dfrac{2}{3}\)

=>\(3\left(x+5\right)=2\left(x+10\right)\)

=>\(3x+15=2x+20\)

=>3x-2x=20-15

=>x=5(nhận)

mẫu số ban đầu là 5+5=10

vậy: Phân số ban đầu là \(\dfrac{5}{10}\)

a:

15000m=15km

Thời gian người đó đi hết quãng đường AB là:

\(\dfrac{15}{50}=0,3\left(giờ\right)=18\left(phút\right)\)

b: Người đó đến B lúc:

8h30p+18p=8h48p