giải pt:
X-45/55 + X-47/53 = X-55/45 +X-53/47
các bn giúp mik vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x3 - 7x2 = 3x2 - 12x
<=> x3 - 10x2 + 12x = 0
<=> x(x2 - 10x + 12) = 0
<=> x(x2 - 10x + 25 - 13) = 0
<=> x[(x - 5)2 - 13] = 0
<=> \(x\left(x-5+\sqrt{13}\right)\left(x-5-\sqrt{13}\right)=0\)
<=> x = 0 hoặc x = \(5-\sqrt{13}\)hoặc x = \(5+\sqrt{13}\)
Vậy \(x\in\left\{0;5-\sqrt{13};5+\sqrt{13}\right\}\)là nghiệm phương trình
haha Felix kìa :))
pt <=> \(\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
<=> \(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)
<=> \(\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
Vì \(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\ne0\)
=> x + 2009 = 0 <=> x = -2009
Vậy phương trình có nghiệm x = -2009
Ta có : \(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)(x;y \(\ne\)0)
<=> \(\frac{x+y}{xy}=\frac{1}{4}\)
<=> 4(x + y) = xy
<=> xy - 4x - 4y =0
<=> x(y - 4) - 4y + 16 = 16
<=> x(y - 4) - 4(y - 4) = 16
<=> (x - 4)(y - 4) = 16
Ta có 16 = 1.16 = 4.4 = (-4).(-4) = (-1).(-16)
Lập bảng xét các trường hợp
x - 4 | 1 | 16 | 4 | -4 | -16 | -1 |
y - 4 | 16 | 1 | 4 | -4 | -1 | -16 |
x | 5 (tm) | 20 (tm) | 8(tm) | 0(loại) | -12(loại) | 3 |
y | 20 (tm) | 5 (tm) | 8 (tm) | 0(loại) | 3 | -12(loại) |
Vây các cặp (x;y) thỏa mãn là (5;20) ; (20;5) ; (8;8)
Áp dụng BĐT Bunyakovsky dạng phân thức ta có:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ba}+\frac{c^2}{ca+cb}\)
\(\ge\frac{\left(a+b+c\right)^2}{ab+bc+bc+ca+ca+ab}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(a+b+c\right)^2}{\frac{2\left(a+b+c\right)^2}{3}}=\frac{3}{2}\)
Dấu "=" xảy ra khi: a = b = c
a) Ta có: \(\left(8x+7\right)^2\left(4x+3\right)\left(x+1\right)=\frac{7}{2}\)
\(\Leftrightarrow\left(8x+7\right)^2\cdot2\left(4x+3\right)\cdot8\left(x+1\right)=16\cdot\frac{7}{2}\)
\(\Leftrightarrow\left(8x+7\right)^2\left(8x+6\right)\left(8x+8\right)=56\)
Đặt \(8x+7=a\) khi đó:
\(a^2\left(a-1\right)\left(a+1\right)=56\)
\(\Leftrightarrow a^2\left(a^2-1\right)=56\)
\(\Leftrightarrow a^4-a^2-56=0\)
\(\Leftrightarrow\left(a^2-8\right)\left(a^2+7\right)=0\)
\(\Leftrightarrow a^2-8=0\Leftrightarrow\left(8x+7\right)^2-8=0\)
\(\Leftrightarrow\left(8x+7\right)^2=8\Leftrightarrow\orbr{\begin{cases}8x+7=2\sqrt{2}\\8x+7=-2\sqrt{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}8x=2\sqrt{2}-7\\8x=-2\sqrt{2}-7\end{cases}}\Rightarrow x=\frac{\pm2\sqrt{2}-7}{8}\)
b) Ta có: \(x^2+5y^2-4xy+10x-22y+\left|x+y+z\right|+26=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+25+y^2-2y+1+\left|x+y+z\right|=0\)
\(\Leftrightarrow\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+\left|x+y+z\right|=0\)
\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\\\left|x+y+z\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\\z=2\end{cases}}\)
Vậy x = -3 , y = 1 , z = 2
Gọi \(d=\left(n^3+2n;n^4+3n^2+1\right)\)
\(\Rightarrow\hept{\begin{cases}\left(n^3+2n\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}n\left(n^3+2n\right)=\left(n^4+2n^2\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\)
\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)
\(\Leftrightarrow n^2+1⋮d\Leftrightarrow\left(n^2+1\right)^2⋮d\)
\(\Rightarrow\left(n^2+1\right)^2-\left(n^4+2n^2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1\)
=> P/s tối giản
Gọi \(d=ƯCLN\left(n^3+2n;n^4+3n^2+1\right);\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}n^3+2n⋮d\left(1\right)\\n^4+3n^2+1⋮d\end{cases}}\)
Từ \(\left(1\right)\): \(\Rightarrow n\left(n^3+2n\right)⋮d\)
\(\Rightarrow n^4+2n^2⋮d\)
\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)
\(\Rightarrow n^2+1⋮d\)
\(\Rightarrow\left(n^2+1\right)^2⋮d\)
\(\Rightarrow n^4+2n^2+1⋮d\)
\(\Rightarrow1⋮d\)(do \(n^4+2n^2⋮d\))
Vì \(d>0\)\(\Rightarrow d=1\)
\(\Rightarrow\left(n^3+2n;n^4+3n^2+1\right)=1\)
\(\Rightarrow\frac{n^3+2n}{n^4+3n^2+1}\)là phân số tối tối giản với mọi n nguyên
Ta có: \(P=\frac{2016x^2-2x+1}{x^2}=\frac{2015x^2+\left(x^2-2x+1\right)}{x^2}\)
\(=2015+\frac{\left(x-1\right)^2}{x^2}\ge2015\left(\forall x\ne0\right)\)
Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy Min(P) = 2015 khi x = 1
Ta có : \(P=\frac{2016x^2-2x+1}{x^2}\)
\(=\frac{2015x^2+\left(x-1\right)^2}{x^2}\)
\(=2015+\left(\frac{x-1}{x}\right)^2\)
Vì \(\left(\frac{x-1}{x}\right)^2\ge0\forall x\ne0\)
\(\Rightarrow P\ge2015\forall x\ne0\)
Dấu \("="\) xảy ra \(\Leftrightarrow\left(\frac{x-1}{x}\right)^2=0\)
\(\Leftrightarrow\frac{x-1}{x}=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy \(MinP=2015\Leftrightarrow x=1\)
<=>x-45/55 -1 + x-47/53 -1=x-55/45 -1 + x-53/47-1
<=>x-100/55 + x-100/53 = x-100/45 + x-100/47
<=>(x-100)(1/55 + 1/53 - 1/45 - 1/47 )=0
vi (1/55 + 1/53 - 1/45 - 1/47 ) luon khac 0 nen x-100=0 <=>x=100