56 x 2 = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
b: Phương trình hoành độ giao điểm là:
\(\dfrac{1}{4}x^2=-\dfrac{1}{2}x+2\)
=>\(x^2=-2x+8\)
=>\(x^2+2x-8=0\)
=>(x+4)(x-2)=0
=>\(\left[{}\begin{matrix}x+4=0\\x-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)
Khi x=-4 thì \(y=-\dfrac{1}{2}\cdot\left(-4\right)+2=2+2=4\)
Khi x=2 thì \(y=-\dfrac{1}{2}\cdot2+2=-1+2=1\)
Vậy: Tọa độ giao điểm của (P) và (d) là A(-4;4); B(2;1)
Thu thập dữ liệu là một quá trình tổng hợp tất cả các thông tin từ nhiều nguồn khác nhau và lưu trữ chúng lại trong một hệ thống đã được thiết lập sẵn, sau đó cho phép một cá nhân hay tổ chức có thể trả lời câu hỏi có liên quan đến dữ liệu và đánh giá kết quả.
Bài 4:
a: Xét (O) có \(\widehat{AMB};\widehat{ANB}\) là các góc nội tiếp chắn cung AB
nên \(\widehat{AMB}=\widehat{ANB}=\dfrac{\widehat{AOB}}{2}=\dfrac{120^0}{2}=60^0\)
b: Diện tích hình quạt tròn OAB là:
\(S_{q\left(OAB\right)}=\dfrac{\Omega\cdot R^2\cdot n}{180}=\dfrac{\Omega\cdot6^2\cdot120}{180}=24\Omega\)
Diện tích tam giác OAB là:
\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB\cdot sinAOB=\dfrac{1}{2}\cdot6\cdot6\cdot sin120\simeq9\sqrt{3}\)(cm2)
Diện tích hình viên phân giới hạn bởi dây AB và cung nhỏ AB là:
\(24\Omega-9\sqrt{3}\simeq59,8\left(cm^2\right)\)
Bài 4:
a: Xét (O) có \(\widehat{AMB};\widehat{ANB}\) là các góc nội tiếp chắn cung AB
nên \(\widehat{AMB}=\widehat{ANB}=\dfrac{\widehat{AOB}}{2}=\dfrac{120^0}{2}=60^0\)
b: Diện tích hình quạt tròn OAB là:
\(S_{q\left(OAB\right)}=\dfrac{\Omega\cdot R^2\cdot n}{180}=\dfrac{\Omega\cdot6^2\cdot120}{180}=24\Omega\)
Diện tích tam giác OAB là:
\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB\cdot sinAOB=\dfrac{1}{2}\cdot6\cdot6\cdot sin120\simeq9\sqrt{3}\)(cm2)
Diện tích hình viên phân giới hạn bởi dây AB và cung nhỏ AB là:
\(24\Omega-9\sqrt{3}\simeq59,8\left(cm^2\right)\)
Bài 5:
a: Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
=>\(\widehat{AMB}=90^0\)
b: ΔAMB vuông tại M
=>AM\(\perp\)BC tại M
ΔCMA vuông tại M
mà MI là đường trung tuyến
nên IA=IM
Xét ΔIAO và ΔIMO có
IA=IM
OA=OM
IO chung
Do đó: ΔIAO=ΔIMO
=>\(\widehat{IAO}=\widehat{IMO}\)
=>\(\widehat{IMO}=90^0\)
=>IM là tiếp tuyến của (O)
c: Xét ΔMAB vuông tại M có \(cosMAB=\dfrac{MA}{AB}=\dfrac{R}{2R}=\dfrac{1}{2}\)
nên \(\widehat{MAB}=60^0\)
Xét ΔMNA vuông tại N có \(sinMAN=\dfrac{MN}{MA}\)
=>\(\dfrac{MN}{R}=sin60=\dfrac{\sqrt{3}}{2}\)
=>\(MN=\dfrac{R\sqrt{3}}{2}\)
\(\dfrac{MN}{AB}=\dfrac{R\sqrt{3}}{2}:2R=\dfrac{R\sqrt{3}}{2\cdot2R}=\dfrac{\sqrt{3}}{4}\simeq0,43\)
[53 + (-76)] - [-76 - (-53)]
= [53 - 76] - [-76 + 53]
= 53 - 76 + 76 - 53
= (53 - 53) + (76 - 76)
= 0 + 0
= 0
56 x 2 112
56 x 2 = 112