Cho hàm số y= x^3 -3x^2+2 viết phương trình tiếp tuyến. Biết tiếp tuyến song song với đường thẳng y =9x+2011
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(\left(d'\right):x+2y-3=0\) \(\Rightarrow\) VTPT \(\overrightarrow{n_{d'}}=\left(1;2\right)\)
Gọi \(d\) là tiếp tuyến cần tìm \(\Rightarrow\) VTPT \(\overrightarrow{n_d}=\left(-2;1\right)\)
\(\Rightarrow\left(d\right):-2x+y+c=0\) \(\left(c\inℝ\right)\)
\(\Leftrightarrow y=2x-c\)
Có \(y'=4x^3-2x\). Khi đó cho \(y'\left(x_0\right)=4x_0^3-2x_0=2\)
\(\Leftrightarrow2x_0^3-x_0-1=0\)
\(\Leftrightarrow\left(x_0-1\right)\left(2x_0^2+2x_0+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_0=1\\2x_0^2+2x_0+1=0\left(vôlý\right)\end{matrix}\right.\)
Khi đó pttt cần tìm là \(\left(d\right):y=f'\left(x_0\right)\left(x-x_0\right)+f\left(x_0\right)\)
\(\Leftrightarrow y=f'\left(1\right)\left(x-1\right)+f\left(1\right)\)
\(\Leftrightarrow y=2\left(x-1\right)+3\)
\(\Leftrightarrow y=2x+1\)
\(y=x^4-x^2+3\Rightarrow y'=4x^3-2x\)
tung độ là 3 => \(y_0=3\Rightarrow3=x_0^4-x_0^2+3\)\(\Rightarrow x_0=0\)
\(y'\left(x_0\right)=0^4-0^2=3=3\)
=> phương trình tiếp tuyến: \(y=y'\left(x_0\right)\left(x-x_0\right)+y_0\)
=> y=3(x-0)+3=3x+3
Đối với dao động cơ điều hòa của một chất điểm thì khi chất điểm đi đến vị trí biên nó có tốc độ bằng không và gia tốc cực đại.
\(y=x^3-3x^2+2\)
=>\(y'=3x^2-6x\)
Phương trình tiếp tuyến sẽ có dạng là:
\(y-y_0=y'\left(x_0\right)\left(x-x_0\right)\)
Do đó, ta có: \(y'=9\)
=>\(3x^2-6x=9\)
=>\(x^2-2x=3\)
=>\(x^2-2x-3=0\)
=>(x-3)(x+1)=0
=>\(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
TH1: x=3
\(y\left(3\right)=3^3-3\cdot3^2+2=2\)
\(y'\left(3\right)=3\cdot3^2-6\cdot3=3\cdot9-18=27-18=9\)
Phương trình tiếp tuyến là:
y-2=9(x-3)
=>y-2=9x-27
=>y=9x-27+2=9x-25
TH2: x=-1
\(y\left(-1\right)=\left(-1\right)^3-3\cdot\left(-1\right)^2+1=-1-3+1=-3\)
Phương trình tiếp tuyến là:
y-(-3)=9(x+1)
=>y+3=9x+9
=>y=9x+6