K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2023

a) Đồ thị:

loading...  

b) Gọi giao điểm của đồ thị của hàm số y = x - 1 với trục tung, với trục hoành lần lượt là 2 điểm B và C

Thay x = 0 vào hàm số y = x - 1 ta có:

y = 0 - 1 = - 1

⇒ B(0; -1)

Thay y = 0 vào hàm số y = x - 1 ta có:

x - 1 = 0

⇔ x = 1

⇒ C(1; 0)

c) Gọi (t): y = ax + b (a 0)

Do (t) // (d) nên a = -2

⇒ (t): y = -2x + b

Thay y = -3 vào (d') ta có:

x - 1 = -3

⇔ x = -3 + 1

⇔ x = -2

Thay x = -2; y = -3 vào (t) ta có:

-2.(-2) + b = -3

⇔ 4 + b = -3

⇔ b = -3 - 4

⇔ b = -7

Vậy (t): y = -2x - 7

6 tháng 12 2023

P = (\(\dfrac{1}{\sqrt{x}-1}\) - \(\dfrac{1}{\sqrt{x}}\)) : (\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\) - \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)) với  0 < \(x\) ≠ 1; 4

P = \(\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}\): (\(\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right).\left(\sqrt{x-2}\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\))

P = \(\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\)\(\dfrac{x-1-\left(x-4\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\)

P = \(\dfrac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\) : \(\dfrac{3}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\)

P = \(\dfrac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\) \(\times\) \(\dfrac{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}{3}\)

P = \(\dfrac{\sqrt{x}-2}{3.\sqrt{x}}\)

P = \(\dfrac{\sqrt{x}.\left(\sqrt{x}-2\right)}{3x}\) 

6 tháng 12 2023

b, P = \(\dfrac{1}{4}\)

⇒ \(\dfrac{\sqrt{x}.\left(\sqrt{x}-2\right)}{3x}\)  = \(\dfrac{1}{4}\)

⇒4\(x\) - 8\(\sqrt{x}\) = 3\(x\)

⇒ 4\(x\) - 8\(\sqrt{x}\) - 3\(x\) = 0

     \(x\) - 8\(\sqrt{x}\)   = 0

      \(\sqrt{x}\).(\(\sqrt{x}\) - 8) = 0

       \(\left[{}\begin{matrix}x=0\\\sqrt{x}=8\end{matrix}\right.\)

      \(\left[{}\begin{matrix}x=0\\x=64\end{matrix}\right.\)

      \(x=0\) (loại)

      \(x\) = 64

5 tháng 12 2023

Giả sử \(A\left(x_0;y_0\right)\) là điểm cố định mà \(y=\left(m-2\right)x+3m-1\) luôn đi qua \(\forall m\)

\(\Rightarrow y_0=\left(m-2\right)x_0+3m-1\)

\(\Leftrightarrow y_0-mx_0+2x_0-3m+1=0\)

\(\Leftrightarrow m\left(x_0+3\right)-y_0-2x_0-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+3=0\\-y_0-2x_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=-5\end{matrix}\right.\)

Vậy với mọi m đường thẳng đã cho luôn đi qua điểm cố định có tọa độ (-3; -5)

5 tháng 12 2023

Gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)

Theo đề bài, ta có:

\(y_0=\left(m-2\right)x_0+3m-1\) với mọi m

\(\Leftrightarrow\left(x_0+3\right)m-2x_0-y_0-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\2x_0+y_0+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=5\end{matrix}\right.\)

Vậy đường thẳng đã cho luôn đi qua điểm \(M\left(-3;5\right)\) cố định.

5 tháng 12 2023

a) Xét 2 tam giác ABE và ACF, ta có:

\(\widehat{AEB}=\widehat{ACF}=90^o\) và \(\widehat{A}\) chung 

nên \(\Delta ABE~\Delta ACF\left(g.g\right)\) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\) \(\Rightarrow AB.AF=AC.AE\) (đpcm)

b) Từ \(AB.AF=AC.AE\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\). Từ đó dễ dàng chứng minh \(\Delta AEF~\Delta ABC\left(c.g.c\right)\)

c) Kẻ đường kính AP của (O). Ta có \(\left\{{}\begin{matrix}AB\perp BP\\AB\perp HC\end{matrix}\right.\) \(\Rightarrow\) BP//HC

 CMTT, ta có CP//HB, dẫn đến tứ giác BHCP là hình bình hành. Lại có A' là trung điểm BC \(\Rightarrow\) A' cũng là trung điểm HP.

 Do đó OA' là đường trung bình của tam giác PAH \(\Rightarrow AH=2A'O\left(đpcm\right)\)

4 tháng 12 2023

y=(a-3)+5-a
 

5 tháng 12 2023

Kết quả nhận dạng

\(y=\left(a-3\right)+5-a\)

Để giải phương trình này, ta cần thực hiện các bước sau:

1. Kết hợp các thuật ngữ giống nhau:

             \(y=\left(a-3\right)+5-a\)

2. Rút gọn các thuật ngữ tương tự:

             \(y=-3+5\) 

    3. Tính toán: \(y=2\)

Vậy câu trả lời là y = 2

17 tháng 12 2023

cậu làm được câu này chưa ạ giải cho tớ với:<