Cho ba đa thức: $A(x)=2 x^3-x^2+3 x-5$
$B(x)=2 x^3+x^2+x+5$
a) Tính $A(x)+B(x)$ ?
b) Tìm nghiệm của $H(x)$ biết $H(x)=A(x)+B(x)$ ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số sách 2 lớp 7A và 7B lần lượt là a và b ( sách, a,b thuộc N*)
Ta có a + b = 121
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a/5 = b/6 = a+b/ 5+6 = 121/11 = 11
Quyển sách lớp 7A quyên góp được là:
11 x 5 = 55
Số sách 7B quyên góp được là
11 x 6 = 66
Theo đề bài:
+) Lớp 7A và 7B quyên góp được quyển sách
Nên ta có:
+) Số sách giáo khoa của lớp 6A; lớp 6B tỉ lệ thuận với tỉ lệ thuận với 5; 6
Nên ta có:
Áp dụng tính chất dãy tỉ số bằng nhau ta có
Suy ra: x=55, y= 66 ( thỏa mãn).
Vậy lớp 6A quyên góp được quyển sách, lớp 6B quyên góp được cuốn.
Số ngày trồng cây xong:
\(5x\dfrac{16}{20}=4\) (ngày)
Đáp số:
Gọi X là tập hợp các kết quả có thể xảy ra.
Ta có \(X=\left\{\left(1;1\right);\left(1;2\right);\left(1;3\right);...;\left(6;6\right)\right\}\). Ta thấy tập hợp trên có 36 phần tử, hoặc 36 kết quả có thể xảy ra.
a) Biến cố trên có thể xảy ra nếu xảy ra 1 trong các kết quả sau:
(4;6); (5;5); (6;4). Có 3 kết quả để biến cố trên xảy ra.
Vậy xác suất của biến cố trên là \(\dfrac{3}{36}=\dfrac{1}{12}\).
b) Biến cố trên có thể xảy ra nếu xảy ra 1 trong các kết quả sau:
(1;2); (2;1); (1;4); (2;3); (3;2); (4;1); (1;6); (2;5); (3;4); (4;3); (5;2); (6;1); (3;6); (4;5); (5;4); (6;3); (5;6); (6;5). Có 18 kết quả để biến cố trên xảy ra.
Vậy xác suất để biến cố trên xảy ra là \(\dfrac{18}{36}=\dfrac{1}{2}\).
a) Ta có:
A(x) + B(x) = (2x3 - x2 + 3x - 5) + (2x3 + x2 + x + 5)
= 4x3 + 4x
b) Ta có H(x) = A(x) + B(x) = 4x3 + 4x = 0
=> 4x(x2 + 1) = 0
=> 4x = 0 hoặc x2 + 1 = 0
=> x = 0 : 4 = 0 hoặc x2 = 0 - 1 = -1 (vô lí)
Vậy nghiệm của H(x) = A(x) + B(x) là x = 0
a, A(x)+B(x)=4^3+4x
b,Vậy nghiệm của �(�)H(x) là �=0x=0.