K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2023

 Ta có \(-2x+3y\) \(=3\left(7x+y\right)-23x\), lại có \(7x+y⋮23\)  và \(23x⋮23\) nên \(3\left(7x+y\right)-23x⋮23\) hay \(-2x+3y⋮23\) (đpcm)

28 tháng 6 2023

Theo đề ta có:

\(4a-8=3a+6\)

\(\Rightarrow4a-3a=6+8\)

\(\Rightarrow a=14\)

Vậy với a=14 thì f(a)=g(a)

28 tháng 6 2023

okkkkkkkkkkkkkkk

`@` `\text {Ans}`

`\downarrow`

`a)`

Thu gọn:

`P(x)=`\(5x^4 + 3x^2 - 3x^5 + 2x - x^2 - 4 +2x^5\)

`= (-3x^5 + 2x^5) + 5x^4 + (3x^2 - x^2) + 2x - 4`

`= -x^5 + 5x^4 + 2x^2 + 2x - 4`

`Q(x) =`\(x^5 - 4x^4 + 7x - 2 + x^2 - x^3 + 3x^4 - 2x^2\)

`= x^5 + (-4x^4 + 3x^4) - x^3 + (x^2 - 2x^2) + 7x - 2`

`= x^5 - x^4 - x^3 - x^2 + 7x - 2`

`@` Tổng:

`P(x)+Q(x)=`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) + (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)

`= -x^5 + 5x^4 + 2x^2 + 2x - 4 + x^5 - x^4 - x^3 - x^2 + 7x - 2`

`= (-x^5 + x^5) - x^3 + (5x^4 - x^4) + (2x^2 - x^2) + (2x + 7x) + (-4-2)`

`= 4x^4 - x^3 + x^2 + 9x - 6`

`@` Hiệu:

`P(x) - Q(x) =`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) - (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)

`= -x^5 + 5x^4 + 2x^2 + 2x - 4 - x^5 + x^4 + x^3 + x^2 - 7x + 2`

`= (-x^5 - x^5) + (5x^4 + x^4) + x^3 + (2x^2 + x^2) + (2x - 7x) + (-4+2)`

`= -2x^5 + 6x^4 + x^3 + 3x^2 - 5x - 2`

`b)`

`@` Thu gọn:

\(H (x) = ( 3x^5 - 2x^3 + 8x + 9) - ( 3x^5 - x^4 + 1 - x^2 + 7x)\)

`= 3x^5 - 2x^3 + 8x + 9 - 3x^5 + x^4 - 1 + x^2 - 7x`

`= (3x^5 - 3x^5) + x^4 - 2x^3 - x^2 + (8x + 7x) + (9+1)`

`= x^4 - 2x^3 - x^2 + 15x + 10`

\(R( x) = x^4 + 7x^3 - 4 - 4x ( x^2 + 1) + 6x\)

`= x^4 + 7x^3 - 4 - 4x^3 - 4x + 6x`

`= x^4 + (7x^3 - 4x^3) + (-4x + 6x) - 4`

`= x^4 + 3x^3 + 2x - 4`

`@` Tổng:

`H(x)+R(x)=` \((x^4 - 2x^3 - x^2 + 15x + 10)+(x^4 + 3x^3 + 2x - 4)\)

`= x^4 - 2x^3 - x^2 + 15x + 10+x^4 + 3x^3 + 2x - 4`

`= (x^4 + x^4) + (-2x^3 + 3x^3) - x^2 + (15x + 2x) + (10-4)`

`= 2x^4 + x^3 - x^2 + 17x + 6`

`@` Hiệu: 

`H(x) - R(x) =`\((x^4 - 2x^3 - x^2 + 15x + 10)-(x^4 + 3x^3 + 2x - 4)\)

`=x^4 - 2x^3 - x^2 + 15x + 10-x^4 - 3x^3 - 2x + 4`

`= (x^4 - x^4) + (-2x^3 - 3x^3) - x^2 + (15x - 2x) + (10+4)`

`= -5x^3 - x^2 + 13x + 14`

`@` `\text {# Kaizuu lv u.}`

27 tháng 6 2023

a) Ta có:

A = (a - 1)x^3 + 4x^2 + 8x + 1

b) Ta có:

B = mx^4 - 3x^4 + 3

B = (m - 3)x^4 + 3

Vậy đáp án là:

a) A = (a - 1)x^3 + 4x^2 + 8x + 1

b) B = (m - 3)x^4 + 3

26 tháng 6 2023

                        loading...

     IC = \(\dfrac{1}{2}\)BC (vì trong tam giác đều đường cao cũng là trung tuyến, đường trung trực, đường phân giác của tam giác đó).

    IC = 6 \(\times\) \(\dfrac{1}{2}\) = 3 (cm)

   Xét \(\Delta\)AIC  vuông tại C nên theo pytago ta có:

      AI2 = AC2 - IC2 = 62 - 32 = 27 (cm)

     AI = \(\sqrt{27}\) = 3\(\sqrt{3}\)(cm)

Chọn A. 3\(\sqrt{3}\)cm

 

 

AH
Akai Haruma
Giáo viên
26 tháng 6 2023

Số đo góc nào bạn?

26 tháng 6 2023

                loading...

VABCA'B'C'  = SABC.h

Diện tích của tam giác ABC là: 72 : 9 = 8 (cm2)

SABC = \(\dfrac{1}{2}\)AB.AC = \(\dfrac{1}{2}\)AB2 = 8 ⇒ AB2 = 8.2 = 16 

⇒ AB = AC = \(\sqrt{16}\) = 4 (cm)

Vậy độ dài cạnh đáy AB dài 4cm

 

 

 

26 tháng 6 2023

Gọi số ti vi mỗi loại mà cửa hàng bán được lần lượt là:

\(x;y;z\) (chiếc) \(x;y;z\) \(\in\)N*

Thì số tiền thu được được việc bán mỗi loại ti vi lần lượt là:

20\(x;\) 18\(y\); 15\(z\) 

Theo bài ra ta có: 20\(x\) = 18\(y\) = 15\(z\);    \(x+y+z=62\)

⇒ \(y\) = \(\dfrac{20}{18}\)\(x\) = \(\dfrac{10}{9}\)\(x\)

    z = \(\dfrac{20}{15}\)\(x\) = \(\dfrac{4}{3}x\)

⇒ \(x+\dfrac{10}{9}x+\dfrac{4}{3}x=62\)

    \(x\left(1+\dfrac{10}{9}+\dfrac{4}{3}\right)=62\)

    \(\dfrac{31}{9}\)\(x\)                      = 62

        \(x\)                      = 62: \(\dfrac{31}{9}\)

        \(x\)                      =  18

         \(y\) = \(\dfrac{10}{9}.18=20\)

        \(z=\dfrac{4}{3}.18=24\)

Kết luận: Ti vi sam sung bán được 18 chiếc

                Ti vi LG bán được 20 chiếc

                Ti vi Xiaomi bán được 24 chiếc

   

4

`@` `\text {Ans}`

`\downarrow`

`16,`

`@` Các cặp góc đồng vị:

`+`\(\widehat {M_4}\) và \(\widehat {N_4}\)

`+`\(\widehat {M_1}\) và \(\widehat {N_1}\)

`+`\(\widehat {M_2}\) và \(\widehat {N_2}\)

`+`\(\widehat {M_3}\) và \(\widehat {N_3}\)

`@` Các cặp góc sole trong:

`+`\(\widehat {M_3} \) và \(\widehat {N_1}\)

`+`\(\widehat {M_2}\) và \(\widehat {N_4}\) 

`b,`

Ta có: \(\widehat {M_3} = \widehat {M_1} (\text {đối đỉnh})\)

`=>`\(\widehat {M_1}=50^0\)

\(\widehat {M_3}+\widehat {M_2}=180^0 (\text {kề bù})\)

`=>`\(50^0+\widehat {M_2}=180^0\)

`=>`\(\widehat {M_2}=180^0-50^0=130^0\)

\(\widehat {M_2}=\widehat {M_4} (\text {2 góc đối đỉnh})\)

`=>`\(\widehat {M_4} = 130^0\)

Vì \(\widehat {M_3}\) và \(\widehat {N_1}\) là `2` góc sole trong

`=>`\(\widehat {M_3}=\widehat {N_1}=50^0\)

\(\widehat {M_3}=\widehat {N_3}=50^0 (\text {2 góc đồng vị})\)

\(\widehat {M_2}=\widehat {N_2}=130^0 (\text {2 góc đồng vị})\)

\(\widehat {M_2}=\widehat {N_4}=130^0 (\text {2 góc slt})\)

`17,`

Vì \(\widehat {A_1}\) và \(\widehat {A_2}\) là `2` góc kề bù

`=>`\(\widehat {A_1}+\widehat {A_2}=180^0\)

\(3\widehat {A_1}=2\widehat {A_2}\) (gt)

`=>`\(\widehat{A_1}=\dfrac{2}{3}\cdot\widehat{A_2}\)

Thay \(\widehat{A_1}=\dfrac{2}{3}\widehat{A_2}\)

\(\dfrac{2}{3}\cdot\widehat{A_2}+\widehat{A_2}=180^0\)

`=>`\(\widehat{A_2}\left(\dfrac{2}{3}+1\right)=180^0\)

`=>`\(\widehat{A_2}\cdot\dfrac{5}{3}=180^0\)

`=>`\(\widehat{A_2}=180^0\div\dfrac{5}{3}\)

`=>`\(\widehat{A_2}=108^0\)

Vậy, số đo \(\widehat{A_2}=108^0\)

\(\widehat {A_1}+\widehat {A_2}=180^0 (\text {kề bù})\)

`=>`\(\widehat{A_1}+108^0=180^0\)

`=>`\(\widehat{A_1}=72^0\)

\(\widehat {A_1}=\widehat {A_3}=72^0 (\text {đối đỉnh})\)

\(\widehat {A_2}=\widehat {A_4}=108^0 (\text {đối đỉnh})\)

`@` Số đo các góc của đỉnh B:

`+`\(\widehat {A_4}=\widehat {B_4}=108^0 (\text {đồng vị})\)

`+`\(\widehat {A_2}=\widehat {B_2}=108^0 (\text {đồng vị})\)

`+`\(\widehat {A_3}=\widehat {B_1}=72^0 (\text {sole trong})\)

`+`\(\widehat {A_3}=\widehat {B_3}=72^0 (\text {đồng vị})\)