Nếu 3 cạnh cắt nhau tại 1 điểm thì có góc nào đối đỉnh bằng nhau không ??
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Áp dụng định lý Py-ta-go ta có :
\(^{BC^2=AB^2+AC^2}\)
Mà BC = 10cm
=> \(100cm=AB^2+AC^2\)
Ta co AB tỉ lệ với 3 ; AC tỉ lệ với 4
=> AB thuộc bội của 3 => AB^2 vừa là số chính phương , vừa là bôi của 3 (1)
AC thuộc bội của 4 => AC^2 vừa là số chính phương , vừa là bội của 4 (2)
Từ (1;2) ta có độ dài của hai cạnh AB và AC là hai số chính phương nhỏ hơn 100 và có tổng là 100
Các số chính phương nhỏ hơn 100 có 4 ; 9 ; 16 ; 25;
36 ; 49 ; 64 ; 81.
Ta thấy trong dãy trên có 81+9 và 36+64 có tổng bằng 100 => hai cạnh góc vuông là ...
do bận nên mình làm mỗi ý a , bạn tự làm nốt
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right).....\left(\frac{1}{2004}-1\right)\left(\frac{1}{2005}-1\right)\)
\(=\frac{-1}{2}.\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right)......\left(-\frac{2003}{2004}\right)\left(-\frac{2004}{2005}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{2003}{2004}.\frac{2004}{2005}\)
\(=\frac{1}{2005}\)
Ta có : \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right).......\left(\frac{1}{2005}-1\right)\)
\(=-\frac{1}{2}.\left(-\frac{2}{3}\right)\left(-\frac{3}{4}\right)........\left(-\frac{2004}{2005}\right)\)
\(=\frac{-1}{2}.\frac{2}{-3}.\frac{-3}{4}..........\frac{2004}{-2005}\)
\(=\frac{-1}{-2005}=\frac{1}{2005}\)