Tìm GTLN của biểu thức:
M = (x^2y^3 + x^3y^2 - x^2 + y^2 + 5) - (x^2y^3 + x^3y^2 + 2y^2 - 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a + b + c)[(a - b)2 + (b - c)2 + (c - a)2] = 0
=> a + b + c = 0
Hoặc (a - b)2 + (b - c)2 + (c - a)2 = 0
Mặt khác : (a - b)2 \(\ge\)0
(b - c)2 \(\ge\)0
(c - a)2 \(\ge\)0
=> (a - b)2 = 0 => a - b = 0 => a = b
(b - c)2 = 0 b - c = 0 b = c
(c - a)2 = 0 c - a = 0 c = a
=> a = b = c
Ta có :
\(B=\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)\)
\(B=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\) (quy đồng cho các hạng tử cùng mẫu rồi cộng)
\(B=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{bca}\)
Mà a = b = c
Thay vào , ta lại có :
\(B=\frac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a^3}=\frac{2a.2a.2a}{a^3}=\frac{8.a^3}{a^3}=8\)
=> B = 8
\(A=a\left(b+c\right)-b\left(a+c\right)+c\left(a+b\right).\)
\(=a\left(b+1\right)-b\left(a+1\right)+1\cdot1000.\)
\(=ab+a-ab-b+1000.\)
\(=a-b+1000\)
\(=1000+1000=2000\)