Cho tam giác ABC với AB ≤ BC ≤ CA. Trên các cạnh BC và AC lần lượt lấy hai điểm M và N (khác A,B,C). Chứng minh rằng MN < AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng dãy tỉ số bằng nhau ta có: \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2a+2b+2c+2d}=\frac{1}{2}\)
\(\Rightarrow a=b;b=c;c=d;d=a\) hay \(a=b=c=d\)
\(\Rightarrow A=\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)
\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2b+2c+2d+2a}=\frac{a+b+c+d}{2\left(a+b+c+d+\right)}=\frac{1}{2}\)=\(\frac{1}{2}\)
\(\Rightarrow2a=2b,2b=2c,2c=2d,2d=2a\)
\(\Leftrightarrow a=b=c=d\)
\(\Rightarrow A=\frac{2011a-2010b}{c+d}+\frac{2011b-2010c}{a+d}+\frac{2011c-2010d}{a+b}=\frac{2011d-2010a}{b+c}\)
\(\Leftrightarrow A=\frac{2011a-2010a}{a+a}+\frac{2011b-2010b}{b+b}+\frac{2011c-2010c}{c+c}+\frac{2011d-2010d}{d+d}\)
\(\Leftrightarrow A=\frac{a}{2a}+\frac{b}{2b}+\frac{c}{2c}+\frac{d}{2d}\)
\(\Leftrightarrow A=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)