(x-7).(x+3)<0
(x-1/2).(x=2/7)>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3-\frac{x}{5}-x=\left(-\frac{3}{5}\right)^2\)
đề như thế này à
\(\frac{3-x}{5-x}=\left(-\frac{3}{5}\right)^2\)
=> \(\frac{3-x}{5-x}=\frac{9}{25}\)
=> (3 - x). 25 = 9.(5 - x)
=> 75 - 25x = 45 - 9x
=> 75 - 45 = -9x + 25x
=> 30 = 16x
=> x = 30 : 16
=> x = 15/8
\(0\le\frac{x}{5}\le2\Rightarrow\frac{x}{5}\in\left\{0;1;2\right\}\)
\(\Rightarrow x\in\left\{0;5;10\right\}\)
\(A=\frac{1}{2}+\frac{1}{14}+\frac{1}{35}+\frac{1}{65}+\frac{1}{104}+\frac{1}{152}\)
\(A=\frac{1}{1.2}+\frac{1}{2.7}+\frac{1}{7.5}+\frac{1}{5.13}+\frac{1}{13.8}+\frac{1}{8.19}\)
\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+\frac{2}{10.13}+\frac{2}{13.16}+\frac{2}{16.19}\)
\(A=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}\right)\)
\(A=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}\right)\)
\(A=\frac{2}{3}.\left(1-\frac{1}{19}\right)\)
\(A=\frac{2}{3}.\frac{18}{19}\)
\(\Rightarrow A=\frac{12}{19}\)
\(A=\frac{1}{2}+\frac{1}{14}+\frac{1}{35}+\frac{1}{104}+\frac{1}{152}\)
\(A=\frac{2}{4}+\frac{2}{28}+\frac{2}{70}+\frac{2}{130}+\frac{2}{208}+\frac{2}{304}\)
\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+\frac{2}{10.13}+\frac{2}{13.16}+\frac{2}{16.19}\)
\(A=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}\right)\)
\(A=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}\right)\)
\(A=\frac{2}{3}.\left(1-\frac{1}{19}\right)\)
\(A=\frac{2}{3}.\frac{18}{19}\)
\(A=\frac{12}{19}\)
\(x-\left(24-x\right)=x-19\)
\(x-24+x-x=19\)
\(x+x-x=24+19\)
\(x=43\)
x - ( 24 - x ) = x -19
=> x - 24 + x = x - 19
=> -24 = x - 19
=> -x = 24 - 19
=> -x = 5
=> x = -5
\(\frac{1}{2}\left(x-\frac{1}{3}\right)-3\left(x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\frac{1}{2}\left(x-\frac{1}{3}\right).2-3\left(x-\frac{1}{3}\right).2=0.2\)
\(\Leftrightarrow x-\frac{1}{3}-6\left(x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow-5x+\frac{5}{3}=0\)
\(\Leftrightarrow-5x=0-\frac{5}{3}\)
\(\Leftrightarrow-5x=-\frac{5}{3}\)
\(\Leftrightarrow x=\left(-\frac{5}{3}\right):\left(-5\right)\)
\(\Leftrightarrow x=\frac{1}{3}\)
\(\Rightarrow x=\frac{1}{3}\)
\(\frac{27^3.4^5}{6^8}:\left(\frac{5^5.2^4}{10^4}:\frac{6^4}{2^6.3^4}\right)\)
\(=\frac{3^9.2^{10}}{6^8}:\left(5:\frac{1}{2^2}\right)\)\(=3.2^2:20=\frac{12}{20}=\frac{3}{5}\)
\(\frac{27^3.4^5}{6^8}:\left(\frac{5^5.2^4}{10^4}:\frac{6^4}{2^6.3^4}\right)\)
\(=\frac{\left(3^3\right)^3.\left(2^2\right)^5}{\left(3.2\right)^8}:\left(\frac{5^5.2^4}{\left(5.2\right)^4}:\frac{\left(2.3\right)^4}{2^6.3^4}\right)\)
\(=\frac{3^9.2^{10}}{3^8.2^8}:\left(\frac{5^5.2^4}{5^4.2^4}:\frac{2^4.3^4}{2^6.3^4}\right)\)
\(=3.2^2:\left(5:\frac{1}{2^2}\right)\)
\(=3.4:\left(5.4\right)\)
\(=12:20\)
\(=\frac{12}{20}=\frac{3}{5}\)
Để \(P\in Z\)thì \(n\in Z\)
\(P=\frac{2n+5}{n+3}\)
\(\Rightarrow P=\frac{2n+6-1}{n+3}\)
\(\Rightarrow P=2+\frac{-1}{n+3}\)
Mà \(n\in Z;-1⋮n+3\)
\(\Rightarrow n+3\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{-4;-2\right\}\)
3. Từ đề bài, ta có :
\(\frac{x}{9}-\frac{1}{18}=\frac{3}{y}\)
\(\Rightarrow\frac{2x-1}{18}=\frac{3}{y}\)
\(\Rightarrow\left(2x-1\right).y=18.3=54\)
Mà \(2x-1\)là số lè.
\(\Rightarrow\)Ta có bảng sau :
2x - 1 | 1 | 27 | 9 |
y | 54 | 2 | 6 |
x | 1 | 14 | 5 |
Vậy ta tìm được 3 cặp số ( x;y ) thỏa mãn đề bài là : ( 1;54 ) ; ( 14;2 ) ; ( 5;6 )
P/s : Bài 2 k làm được thì ib mk nhé -.-
\(\left(x-7\right)\left(x+3\right)< 0\)
\(\orbr{\begin{cases}\hept{\begin{cases}x-7< 0\\x+3>0\end{cases}}\\\hept{\begin{cases}x-7>0\\x+3< 0\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x< 7\\x>-3\end{cases}}\\\hept{\begin{cases}x>7\\x< -3\end{cases}}\end{cases}}\Leftrightarrow-3< x< 7\)