a) thu gọn rồi tìm bậc của đa thức M(x)= 7-2x4+5x-0,2x3+2x4+11x2 b) cho hai đa thức A(x)=3x2+3x-18; B(x)= -3x2-2x+5 . Tính C(x)= A(x)+B(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$L(x)=x^2-12x+35=0$
$\Rightarrow (x^2-5x)-(7x-35)=0$
$\Rightarrow x(x-5)-7(x-5)=0$
$\Rightarrow (x-5)(x-7)=0$
$\Rightarrow x-5=0$ hoặc $x-7=0$
$\Rightarrow x=5$ hoặc $x=7$
Vậy $x=5$ và $x=7$ là nghiệm của $L(x)$
- \(x\) - 3\(x^2\) = 0
- \(x\)( 1 + 3\(x\)) =0
\(\left[{}\begin{matrix}x=0\\1+3x=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\3x=-1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(x\) \(\in\) {0; - \(\dfrac{1}{3}\)}
Lời giải:
$E(x)=-x-3x^2=0$
$\Rightarrow -x(1+3x)=0$
$\Rightarrow x=0$ hoặc $1+3x=0$
$\Rightarrow x=0$ hoặc $x=\frac{-1}{3}$
Vậy nghiệm của $E(x)$ là $x=0$ và $x=\frac{-1}{3}$
3\(x\) = 97 - 1
3\(x\) = 96
\(x\) = 96 : 3
\(x\) = 32
87 - 2\(x\) + 8 = 0
95 - 2\(x\) = 0
2\(x\) = 95
\(x\) = \(\dfrac{95}{2}\) ≠ 32
Không tồn tại \(x\) thỏa mãn đề bài.
\(\dfrac{2x-5}{x-1}\) nguyên
⇒ \(\left(2x-5\right)⋮\left(x-1\right)\)
Mà \(\left(x-1\right)⋮\left(x-1\right)\)
⇒ \(\left[\left(2x-5\right)-\left(x-1\right)-\left(x-1\right)\right]⋮\left(x-1\right)\)
⇒ \(\left(-3\right)⋮\left(x-1\right)\)
⇒ \(\left(x-1\right)\inƯ\left(-3\right)\)
\(\in\left\{1;3;-1;-3\right\}\)
\(x-1\) | 1 | 3 | -1 | -3 |
\(x\) | 2 | 4 | 0 | -2 |
Vậy \(x\in\left\{-2;0;2;4\right\}\)
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔANH
=>HM=HN
c: ΔAMH=ΔANH
=>AM=AN
=>A nằm trên đường trung trực của MN(1)
Ta có: HM=HN
=>H nằm trên đường trung trực của NM(2)
Từ (1),(2) suy ra AH là đường trung trực của NM
=>AH\(\perp\)NM
d: Xét ΔAPQ có
PN,QM là các đường cao
PN cắt QM tại H
Do đó: H là trực tâm của ΔAPQ
=>AH\(\perp\)PQ tại E
Xét tứ giác AMHN có \(\widehat{AMH}+\widehat{ANH}=90^0+90^0=180^0\)
nên AMHN là tứ giác nội tiếp
Xét tứ giác HMPE có \(\widehat{HMP}+\widehat{HEP}=90^0+90^0=180^0\)
nên HMPE là tứ giác nội tiếp
Xét tứ giác HNQE có \(\widehat{HNQ}+\widehat{HEQ}=90^0+90^0=180^0\)
nên HNQE là tứ giác nội tiếp
Ta có: \(\widehat{MEH}=\widehat{MPH}\)(MHEP nội tiếp)
\(\widehat{NEH}=\widehat{NQH}\)(NHEQ nội tiếp)
mà \(\widehat{MPH}=\widehat{NQH}\left(=90^0-\widehat{PAQ}\right)\)
nên \(\widehat{MEH}=\widehat{NEH}\)
=>EH là phân giác của góc MEN
Ta có: \(\widehat{NMH}=\widehat{NAH}\)(AMHN nội tiếp)
\(\widehat{EMH}=\widehat{EPH}\)(MHEP nội tiếp)
mà \(\widehat{NAH}=\widehat{EPH}\left(=90^0-\widehat{AQP}\right)\)
nên \(\widehat{NMH}=\widehat{EMH}\)
=>MH là phân giác của góc NME
Xét ΔNME có
MH,EH là các đường phân giác
Do đó: H là tâm đường tròn nội tiếp ΔNME
=>H là điểm cách đều ba cạnh của ΔMNE
Bài 2:
a: \(x\left(2x+x^2\right)+B\left(x\right)=\left(x^2-6x\right)\left(x+1\right)\)
=>\(B\left(x\right)=x^3+x^2-6x^2-6x-2x^2-x^3\)
=>\(B\left(x\right)=-7x^2-6x\)
b: \(B\left(x\right)=-7x^2-6x\)
Bậc là 2
Hệ số cao nhất là -7
Hệ số tự do là 0
Bài 4:
a: \(VT=\left(a+1\right)\left(a^2-a+1\right)\)
\(=a^3-a^2+a+a^2-a+1\)
\(=a^3+1=VP\)
b: \(VT=\left(a+1\right)\left(a^3-a^2+a-1\right)\)
\(=a^4-a^3+a^2-a+a^3-a^2+a-1\)
\(=a^4-1=VP\)
9: \(\left(\dfrac{2}{3}\right)^3-4\cdot\left(-1\dfrac{3}{4}\right)^2+\left(-\dfrac{2}{3}\right)^3\)
\(=\dfrac{8}{27}-4\cdot\left(\dfrac{7}{4}\right)^2-\dfrac{8}{27}\)
\(=-4\cdot\dfrac{49}{16}=-\dfrac{49}{4}\)
10: \(\left(-\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
\(=-3-1+\dfrac{1}{4}:2=-4+\dfrac{1}{8}=-\dfrac{31}{8}\)
11: \(25\cdot\left(-\dfrac{1}{5}\right)^2+\dfrac{1}{5}-9\cdot\left(-\dfrac{1}{9}\right)^2+\dfrac{1^{20}}{9}\)
\(=25\cdot\dfrac{1}{25}+\dfrac{1}{5}-9\cdot\dfrac{1}{81}+\dfrac{1}{9}\)
\(=\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}=\dfrac{2}{5}\)
12: \(\left(-\dfrac{1}{3}\right)^2+\left(-\dfrac{1}{4}\right)^3\cdot64+\left(-\dfrac{2015}{2016}\right)^0\)
\(=\dfrac{1}{9}+\dfrac{-1}{64}\cdot64+1\)
\(=\dfrac{1}{9}\)
13: \(\dfrac{1}{3}-\dfrac{1}{3}:\left(-\dfrac{2}{3}\right)^2+\left(-3\right)^3\cdot\left(7\dfrac{7}{9}-9\dfrac{2}{3}\right)\)
\(=\dfrac{1}{3}-\dfrac{1}{3}:\dfrac{4}{9}+\left(-27\right)\left(-2+\dfrac{7}{9}-\dfrac{2}{3}\right)\)
\(=\dfrac{1}{3}-\dfrac{1}{3}\cdot\dfrac{9}{4}+\left(-27\right)\cdot\left(-2+\dfrac{1}{9}\right)\)
\(=\dfrac{1}{3}-\dfrac{3}{4}+\left(-27\right)\cdot\dfrac{-17}{9}\)
\(=\dfrac{-5}{12}+51=\dfrac{607}{12}\)
Ta thấy \(N=n^4-n^2-2n-1\)
\(N=\left(n^2\right)^2-\left(n+1\right)^2\)
\(N=\left(n^2+n+1\right)\left(n^2-n-1\right)\)
Với \(n\inℕ\) thì \(n^2+n+1>n^2-n-1\) nên để N là SNT thì:
\(n^2-n-1=1\) (1) và \(n^2+n+1\) là SNT.
(1) \(\Leftrightarrow n^2-n-2=0\)
\(\Leftrightarrow n^2+n-2n-2=0\)
\(\Leftrightarrow n\left(n+1\right)-2\left(n+1\right)=0\)
\(\Leftrightarrow\left(n+1\right)\left(n-2\right)=0\)
\(\Leftrightarrow n=2\) (do n là số tự nhiên)
Khi đó \(n^2+n+1=2^2+2+1=7\) là SNT -> Thỏa mãn.
Vậy \(n=2\)
Lời giải:
a.
$M(x)=(-2x^4+2x^4)-0,2x^3+11x^2+5x+7$
$=-0,2x^3+11x^2+5x+7$
Bậc của $M(x)$ là $3$
b.
$C(x)=A(x)+B(x)=(3x^2+3x-18)+(-3x^2-2x+5)$
$=3x^2+3x-18-3x^2-2x+5=(3x^2-3x^2)+(3x-2x)+(-18+5)$
$=x-13$
a: \(M\left(x\right)=7-2x^4+5x-0,2x^3+2x^4+11x^2\)
\(=\left(2x^4-2x^4\right)-0,2x^3+11x^2+5x+7\)
\(=-0,2x^3+11x^2+5x+7\)
bậc là 3
b: C(x)=A(x)+B(x)
\(=3x^2+3x-18-3x^2-2x+5\)
=x-13