K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAE vuông tại A và ΔBKE vuông tại K có

BE chung

\(\widehat{ABE}=\widehat{KBE}\)

Do đó: ΔBAE=ΔBKE

=>BA=BK

b: ΔBAE=ΔBKE

=>EA=EK

=>E nằm trên đường trung trực của AK(1)

Ta có: BA=BK

=>B nằm trên đường trung trực của AK(2)

Từ (1),(2) suy ra BE là đường trung trực của AK

=>BE\(\perp\)AK

c: Ta có: EA=EK

mà EK<EC(ΔEKC vuông tại K)

nên EA<EC

d: Xét ΔEAD vuông tại A và ΔEKC vuông tại K có

EA=EK

\(\widehat{AED}=\widehat{KEC}\)(hai góc đối đỉnh)

Do đó: ΔEAD=ΔEKC

=>AD=KC

Xét ΔBDC có \(\dfrac{BA}{AD}=\dfrac{BK}{KC}\)

nên AK//DC

13 tháng 5

HS khá nhé em

13 tháng 5

Nó còn phải phụ thuộc vào hạnh kiểm nữa em nhé. 

AH
Akai Haruma
Giáo viên
13 tháng 5

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk$.

a.

$\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b(k+1)}=\frac{k}{k+1}$

$\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d(k+1)}=\frac{k}{k+1}$

$\Rightarrow \frac{a}{a+b}=\frac{c}{c+d}$

b.

$\frac{a-b}{c-d}=\frac{bk-b}{dk-d}=\frac{b(k-1)}{d(k-1)}=\frac{b}{d}$

$\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k(b+d)}{b+d}=k$

$\Rightarrow$ đề chưa đúng. Bạn xem lại.

AH
Akai Haruma
Giáo viên
13 tháng 5

Lời giải:

$3x=2y\Rightarrow \frac{x}{y}=\frac{2}{3}$

Khi đó:

$\frac{x}{yz}:\frac{y}{xz}=\frac{x.xz}{yz.y}=\frac{x^2}{y^2}=(\frac{x}{y})^2=(\frac{2}{3})^2=\frac{4}{9}$

Thời gian hai người đi từ đầu đến chỗ gặp là:

7h45p-7h15p=30p=0,5(giờ)

Tổng vận tốc của hai người là 15+4=19(km/h)

Độ dài quãng đường AB là:

19x0,5=9,5(km)

Nửa chu vi mảnh đất là 100:2=50(m)

Chiều dài mảnh đất là (50+10):2=60:2=30(m)

Chiều rộng mảnh đất là 30-10=20(m)

Diện tích mảnh đất là \(30\cdot20=600\left(m^2\right)\)

12 tháng 5

chiều dài Mđất là: (100+10): 2=55m

Chiều rọng Mđất là: 100-55=45m

S Mđất là: 55.45=2475 m vuông

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của CB

Xét ΔCBN có

CM là đường trung tuyến

\(CI=\dfrac{2}{3}CM\)

Do đó: I là trọng tâm của ΔCBN

Xét ΔCBN có

I là trọng tâm

H là trung điểm của BC

Do đó: I,N,H thẳng hàng

skibidi toillet nhé 

a: Xét ΔBAI vuông tại A và ΔBMI vuông tại M có

BI chung

\(\widehat{ABI}=\widehat{MBI}\)

Do đó: ΔBAI=ΔBMI

=>IA=IM

=>ΔIAM cân tại I

 b: Xét ΔBNC có

NM,CA là các đường cao

NM cắt CA tại I

Do đó: I là trực tâm của ΔBNC

=>BI\(\perp\)NC

c: Sửa đề: Chứng minh AM//NC

Xét ΔBMN vuông tại M và ΔBAC vuông tại A có

BM=BA(ΔBMI=ΔBAI)

\(\widehat{MBN}\) chung

Do đó: ΔBMN=ΔBAC

=>BN=BC

Xét ΔBNC có \(\dfrac{BA}{BN}=\dfrac{BM}{BC}\)

nên AM//NC

12 tháng 5

x = 3

\(\dfrac{6}{x}=\dfrac{10}{5}\)

=>\(x=6\cdot\dfrac{5}{10}\)

=>\(x=\dfrac{30}{10}=3\)

13 tháng 5

loading...  

a) Do AD là tia phân giác của ∠BAC (gt)

⇒ ∠BAD = ∠CAD

Do ∆ABC cân tại A (gt)

⇒ AB = AC

Xét ∆ABD và ∆ACD có:

AB = AC (cmt)

∠BAD = ∠CAD (cmt)

AD là cạnh chung

⇒ ∆ABD = ∆ACD (c-g-c)

⇒ ∠ADB = ∠ADC (hai góc tương ứng)

Mà ∠ADB + ∠ADC = 180⁰ (kề bù)

⇒ ∠ADB = ∠ADC = 180⁰ : 2 = 90⁰

⇒ AD ⊥ BC

b) ∆ABC cân tại A (gt)

AD đường tia phân giác (gt)

⇒ AD cũng là đường trung tuyến

Lại có:

BM là đường trung tuyến của ∆ABC (gt)

BM cắt AD tại G (gt)

⇒ G là trọng tâm của ∆ABC

⇒ BG = 2GM

Do BM là đường trung tuyến của ∆ABC (gt)

⇒ M là trung điểm của AC

⇒ AM = CM

Do CN ⊥ BC (gt)

AD ⊥ BC (cmt)

⇒ CN // AD

⇒ ∠CNM = ∠AGM (so le trong)

Xét ∆CMN và ∆AMG có:

∠CNM = ∠AGM (cmt)

∠CMN = ∠AMG (đối đỉnh)

CM = AM (cmt)

⇒ ∆CMN = ∆AMG (g-c-g)

⇒ MN = MG (hai cạnh tương ứng)

⇒ GN = 2GM

Mà BG = 2GM (cmt)

⇒ BG = GN

c) Do AD là đường trung tuyến của ∆ABC (cmt)

⇒ D là trung điểm của BC

⇒ BD = CD

Xét hai tam giác vuông: ∆GDB và ∆GDC có:

GD là cạnh chung

BD = CD (cmt)

⇒ ∆GDB = ∆GDC (hai cạnh góc vuông)

⇒ BG = CG (hai cạnh tương ứng)

Mà BG = GN (cmt)

⇒ GN = CG

⇒ ∆GNC cân tại G

Để ∆GNC đều thì ∠GNC = 60⁰

Mà CN // AD (cmt)

⇒ ∠GNC = ∠AGM = 60⁰ (so le trong)

⇒ ∠MAG = 90⁰ - 60⁰ = 30⁰

⇒ ∠CAD = 30⁰

⇒ ∠BAD = ∠CAD = 30⁰

⇒ ∠BAC = ∠BAD + ∠CAD = 30⁰ + 30⁰ = 60⁰

Mà ∆ABC cân (gt)

⇒ ∆ABC đều

Vậy ∆ABC đều thì ∆GNC đều