phân tích đa thức thành nhân tử 4x^2-y^2-12x+9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(x^2+x-1=0\)
=>\(x^2+x+\dfrac{1}{4}-\dfrac{5}{4}=0\)
=>\(\left(x+\dfrac{1}{2}\right)^2=\dfrac{5}{4}\)
=>\(\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{\sqrt{5}}{2}\\x+\dfrac{1}{2}=-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}}{2}-\dfrac{1}{2}\\x=-\dfrac{\sqrt{5}}{2}-\dfrac{1}{2}\end{matrix}\right.\)

M = 1999 * 2000² + 1999 * 2001 - 2001 * 2000² + 2001 * 1999
Nhóm các số hạng có chứa 2000² lại với nhau:
M = (1999 * 2000² - 2001 * 2000²) + (1999 * 2001 + 2001 * 1999)
Đặt nhân tử chung 2000² ra ngoài:
M = 2000² * (1999 - 2001) + 2 * (1999 * 2001)
M = 2000² * (-2) + 2 * (1999 * 2001)
Ta thấy 1999 = 2000 - 1 và 2001 = 2000 + 1. Áp dụng hằng đẳng thức (a - b)(a + b) = a² - b²:
M = -2 * 2000² + 2 * [(2000 - 1)(2000 + 1)]
M = -2 * 2000² + 2 * (2000² - 1²)
M = -2 * 2000² + 2 * 2000² - 2 * 1
M = -2

`3 - (x + 1)^2`
`= 3 - (x^2 + 2x + 1)`
`= 3 - x^2 - 2x - 1`
`= 2 - x^2 - 2x`
3 - (\(x+1\))\(2\)
= 3 - (\(x^2\) + 2\(x\) + 1)
= 3 - \(x^2\) - 2\(x-1\)
= - \(x^2\) - 2\(x\) + (3 -1)
= - \(x^2\) - 2\(x\) + 2

Làm thế này nek bạn=
[4x (x+y+z)] [(x+y) (x+z)]+(yz)^2=4(x2+yx+xz)(x2+xz+yx+yz)+(yz)^2
Đặt x2+yx+zx=a ta có:
4a(a-yz)+(yz)2=4a2-4ayz+(yz)2=(2a-yz)2( Giờ thì thay a vào nữa là xong ko hỉu đoạn nào cứ ns nha bạn :D

\(x^2\) - \(x\) + 3.(\(x-1\)) = 0
\(x\left(x-1\right)\) + 3(\(x-1\)) = 0
(\(x-1\))\(\left(x+3\right)\) = 0
\(\left[{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-3; 1}

C = 1 - \(\dfrac{\left(x+3\right)\left(x+5\right)}{2}\)
C = 1 - \(\dfrac{x^2+5x+3x+15}{2}\)
C = 1 - \(\dfrac{x^2+\left(5x+3x\right)+15}{2}\)
C = 1 - \(\dfrac{x^2+8x+16-1}{2}\)
C = 1 - \(\dfrac{\left(x^2+2.x.4+4^2\right)}{2}\) + \(\dfrac{1}{2}\)
C = (1 + \(\dfrac{1}{2}\)) - \(\dfrac{\left(x+4\right)^2}{2}\)
C = \(\dfrac{3}{2}\)- \(\dfrac{\left(x+4\right)^2}{2}\)
Vì (\(x+4\))2 ≥ 0 \(\forall\) \(x\) ⇒ - \(\dfrac{1}{2}\)(\(x+4\))2 ≤ 0 ∀ \(x\)
⇒ \(\dfrac{3}{2}\) - \(\dfrac{\left(x+4\right)^2}{2}\) ≤ \(\dfrac{3}{2}\) dấu bằng xảy ra khi \(x+4\) = 0 ⇒ \(x=-4\)
Vậy giá trị lớn nhất của biểu thức C là \(\dfrac{3}{2}\) xảy ra khi \(x=-4\)

\(x^3\) - \(x-y\) + y3
= (\(x^3\) + y3) - (\(x+y\))
= (\(x+y\)).(\(x^2\) - \(xy\) + y2) - (\(x+y\))
= (\(x+y\)).(\(x^2\) - \(xy+y^2\) - 1)
\(x^3-x-y+y^3\)
\(=\left(x^3+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
4x2 - y2 - 12x + 9
= [4x2 - 12x + 9]- y2
= [(2x)2 - 2.2.x.3 + 32] - y2
= (2x - 3)2 - y2
= (2x - 3 - y).(2x - 3 + y)