y+xy=4x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x\left(5-2y\right)=24\Leftrightarrow x=\dfrac{24}{5-2y}\)(1)
Để x nguyên \(\Rightarrow24⋮5-2y\Rightarrow\left(5-2y\right)=\left\{-24;-12;-8;-6;-4;-3-2;-1;1;2;3;4;6;8;12;24\right\}\)
Tìm y tương ứng thay vào (1) để tìm x
Em nên viết bằng công thức toán học em nhé, như vậy sẽ giúp mọi người hiểu đề đúng và hỗ trợ tốt nhất cho em!
Lời giải:
Giả sử $a\geq b$. Vì $b+3\vdots a$ nên đặt $b+3=at$ với $t$ là số nguyên dương.
Vì $b=at-3< a$
$\Rightarrow a(t-1)< 3$
$\Rightarrow a(t-1)\leq 2$
Mà $a,t-1$ đều là số tự nhiên nên $a(t-1)\geq 0$
Vậy $a(t-1)=0$ hoặc $a(t-1)=1$ hoặc $a(t-1)=2$
TH1: $a(t-1)=0\Rightarrow t-1=0$ (do $a>0$
$\Rightarrow t=1$. Khi đó: $b+3=a$
$a+3\vdots b\Rightarrow b+3+b\vdots b\Rightarrow b+6\vdots b$
$\Rightarrow 6\vdots b\Rightarrow b\in \left\{1; 2; 3; 6\right\}$
Nếu $b=1$ thì $a=4$ (tm)
Nếu $b=2$ thì $a=5$ (tm)
Nếu $b=3$ thì $a=6$ (tm)
Nếu $b=6$ thì $a=9$ (tm)
TH2: $a(t-1)=1\Rightarrow a=t-1=1$
$\Rightarrow a=1; t=2$.
$b+3=at=2a=2\Rightarrow b=-1$ (vô lý => loại)
TH3: $a(t-1)=2\Rightarrow (a,t-1)=(1,2), (2,1)$
$\Rightarrow (a,t)=(1,3), (2,2)$
Nếu $a=1, t=3$ thì: $b+3=at=3a=3\Rightarrow b=0$ (loại)
Nếu $a=2; t=2$ thì $b+3=at=4\Rightarrow b=1$
Vậy $(a,b)=(4,1), (5,2), (6,3), (9,6), (1,2)$ và hoán vị.
Bài 8:
$A=2^{2n+1}+3^{2n+1}=4^n.2+9^n.3$
$\equiv (-1)^n.2+(-1)^n.3\pmod 5$
Nếu $n$ chẵn:
$A\equiv (-1)^n.2+(-1)^n.3\equiv 2+3\equiv 5\equiv 0\pmod 5$
$\Rightarrow A\vdots 5$
Nếu $n$ lẻ:
$A\equiv (-1)^n.2+(-1)^n.3\equiv -2+(-3)\equiv -5\equiv 0\pmod 5$
$\Rightarrow A\vdots 5$
Vậy $A$ chia hết cho $5$
Bài 9:
Có: $2^5=32\equiv 1\pmod {31}$
$\Rightarrow 2^{2002}=(2^5)^{400}.2^2\equiv 1^{400}.2^2\equiv 4\pmod {31}$
$\Rightarrow 2^{2002}-4\equiv 0\pmod {31}$
$\Rightarrow 2^{2002}-4\vdots 31$
Có: \(\dfrac{2}{x-2}-\dfrac{2}{x+2}=2\left(dkxd:x\ne\pm2\right)\)
\(\Rightarrow2\cdot\left(\dfrac{1}{x-2}-\dfrac{1}{x+2}\right)=2\)
\(\Rightarrow\dfrac{1}{x-2}-\dfrac{1}{x+2}=1\)
\(\Rightarrow\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=1\)
\(\Rightarrow\dfrac{x+2-x+2}{x^2-4}=1\)
\(\Rightarrow\dfrac{4}{x^2-4}=1\)
\(\Rightarrow x^2-4=4\)
\(\Rightarrow x^2=8\)
Thay \(x^2=8\) vào \(\left(x^2+1\right)^2\), ta được:
\(\left(8+1\right)^2=9^2=81\)
\(\dfrac{2}{x-2}\) - \(\dfrac{2}{x+2}\) - 2 = 0
2.(\(\dfrac{1}{x-2}\) - \(\dfrac{1}{x+2}\) - 1) = 0
\(\dfrac{1}{x-2}\) - \(\dfrac{1}{x+2}\) - 1 = 0
\(\dfrac{x+2-\left(x-2\right)-\left(x-2\right).\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\) = 0
\(x\) + 2 - \(x\) + 2 - (\(x^2\) + 2\(x\) - 2\(x\) - 4) = 0
4 - \(x^2\) + 4 = 0
8 - \(x^2\) = 0
\(x^2\) = 8
Thay \(x^2\) = 8 vào ( \(x^2\) + 1)2 ta có: (\(x^2\) + 1) = (8 + 1)2 = 92 = 81
y + \(xy\) = 4\(x\)
y(1 + \(x\)) = 4\(x\)
y = \(\dfrac{4x}{x+1}\) (đk: \(x\) ≠ - 1)
y \(\in\) Z; ⇒4\(x\) ⋮ \(x\) + 1 ⇒ 4\(x\) + 4 - 4 ⋮ \(x+1\)
⇒4.(\(x+1\)) - 4 ⋮ \(x+1\)⇒ \(x+1\) \(\in\) Ư(4) = {-4; -2; -1; 1; 2; 4}
lập bảng ta có:
'Theo bảng trên ta có các cặp số nguyên \(x;y\)
thỏa mãn đề bài là:
(\(x;y\) \(\)) = (-5; 5); (-3; 6); (-2; 8); (0; 4); (1; 2); (3; 1)