K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2024

cíu tui với

14 tháng 1 2024

ui khó thế 

 

14 tháng 1 2024

-5/8 : 15/4 = -5/8.4/15 = -1/6

14 tháng 1 2024

Ta có : 2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-82x+2x+1+2x+2+...+2x+2015=220198

\Leftrightarrow2^x\left(1+2+2^2+...+2^{2015}\right)=2^{2019}-82x(1+2+22+...+22015)=220198 (1)

Đặt : A=1+2+2^2+...+2^{2015}A=1+2+22+...+22015

\Rightarrow2A=2+2^2+2^3+...+2^{2016}2A=2+22+23+...+22016

\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2016}\right)-\left(1+2+2^2+...+2^{2015}\right)2AA=(2+22+23+...+22016)(1+2+22+...+22015)

\Rightarrow A=2^{2016}-1A=220161

Khi đó (1) trở thành :

2^x\left(2^{2016}-1\right)=2^{2019}-2^32x(220161)=2201923

\Leftrightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)2x(220161)=23(220161)

\Leftrightarrow2^x=2^3\left(2^{2016}-1\ne0\right)2x=23(220161=0)

\Leftrightarrow x=3x=3

Vậy : x=3x=3

15 tháng 1 2024

2x+2x+1+...+2x+2015=2201982�+2�+1+...+2�+2015=22019-8

2x.1+2x.2+....+2x.22015=220198→2�.1+2�.2+....+2�.22015=22019-8

2x.(1+2+...+22015)=220198→2�.(1+2+...+22015)=22019-8

Đặt:

A=1+2+...+22015�=1+2+...+22015

2A=2.(1+2+...+22015)2�=2.(1+2+...+22015)

2A=2+22+...+220162�=2+22+...+22016

2AA=(2+22+...+22016)(1+2+...+22015)2�-�=(2+22+...+22016)-(1+2+...+22015)

A=2+22+...+2201612...22015�=2+22+...+22016-1-2-...-22015

A=220161�=22016-1

Nên:

2x.(1+2+...+22015)=2201982�.(1+2+...+22015)=22019-8

2x.(220161)=220198→2�.(22016-1)=22019-8

2x=(220198):(220161)→2�=(22019-8):(22016-1)

2x=220198220161→2�=22019-822016-1

2x=23.(220161)220161→2�=23.(22016-1)22016-1

2x=23→2�=23

x=3→�=3

Vậy x=3.

14 tháng 1 2024

⇒2x-6y=6

ta có: 6=1.6=2.3=-2.-3=-1.-6

xong xét từng trường hợp ra nhé.

 

13 tháng 1 2024

a) Đối tượng thống kê là điểm thi Toán 15 phút  của một tổ.                        Tiêu chí thống kê là số học sinh tương ứng với mỗi loại điểm.

b) Tổng số học sinh lớp 6C là:                                                                         8+7+9+4+5+1+3+2+1= 40  ( học sinh )                                              Vậy lớp 6C có 40 học sinh.

13 tháng 1 2024

a) Đối tượng thống kê: Điểm thi Toán 15 phút của 1 tổ ở lướp 6C

    Tiêu chí thống kê: Số HS tương ứng với mỗi loại điểm

b) Tổng số HS ở lớp 6C là:

8+7+9+4+5+1+3+2+1= 40  ( học sinh )

13 tháng 1 2024

a) \(\left(-12\right).8\) với \(\left(-19\right).3\)

Ta có:

\(\left(-12\right).8=\left(-96\right)\)

\(\left(-19\right).3=\left(-57\right)\)

Mà \(\left(-96\right)< \left(-57\right)\) nên \(\left(-12\right).8< \left(-19\right).3\)

13 tháng 1 2024

b) \(11.\left(-2\right)\) với \(\left(-3\right).10\)

Ta có:

\(11.\left(-2\right)=\left(-22\right)\)

\(\left(-3\right).10=\left(-30\right)\)

Mà \(\left(-22\right)>\left(-30\right)\) nên \(11.\left(-2\right)>\left(-3\right).10\)

13 tháng 1 2024

Bài 4:

a; \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) = \(\dfrac{5}{20}\) - \(\dfrac{4}{20}\) = \(\dfrac{1}{20}\)

b; \(\dfrac{3}{5}\) - \(\dfrac{-1}{2}\) = \(\dfrac{6}{10}\) + \(\dfrac{5}{10}\) = \(\dfrac{11}{10}\)

c; \(\dfrac{3}{5}\) - \(\dfrac{-1}{3}\) = \(\dfrac{9}{15}\) + \(\dfrac{5}{15}\) = \(\dfrac{14}{15}\)

d; \(\dfrac{-5}{7}\) - \(\dfrac{1}{3}\)\(\dfrac{-15}{21}\) - \(\dfrac{7}{21}\)\(\dfrac{-22}{21}\)

13 tháng 1 2024

Bài 5

a; 1 + \(\dfrac{3}{4}\) = \(\dfrac{4}{4}\) + \(\dfrac{3}{4}\) = \(\dfrac{7}{4}\)       b; 1 - \(\dfrac{1}{2}\) = \(\dfrac{2}{2}\) - \(\dfrac{1}{2}\) = \(\dfrac{1}{2}\)

c; \(\dfrac{1}{5}\) - 2 = \(\dfrac{1}{5}\) - \(\dfrac{10}{5}\) = \(\dfrac{-9}{5}\)     d; -5 - \(\dfrac{1}{6}\) = \(\dfrac{-30}{6}\) - \(\dfrac{1}{6}\) = \(\dfrac{-31}{6}\)

e; - 3 - \(\dfrac{2}{7}\)\(\dfrac{-21}{7}\) - \(\dfrac{2}{7}\)\(\dfrac{-23}{7}\)     f; - 3 + \(\dfrac{2}{5}\) = \(\dfrac{-15}{5}\) + \(\dfrac{2}{5}\)= - \(\dfrac{13}{5}\)

g; - 3 - \(\dfrac{2}{3}\) = \(\dfrac{-9}{3}\) - \(\dfrac{2}{3}\) = \(\dfrac{-11}{3}\)     h; - 4 - \(\dfrac{-5}{7}\) = \(\dfrac{-28}{7}\)\(\dfrac{5}{7}\) = - \(\dfrac{23}{7}\)

13 tháng 1 2024

Bài đâu bạn?

13 tháng 1 2024

Có quá nhiều bài, thứ nhất em đăng tách ra, thứ hai chụp gần cận cho rõ, thứ ba em chỉ đăng bài cần giúp

NV
13 tháng 1 2024

Với \(n>2\) ta có: \(\dfrac{n+\left(n+1\right)}{n^2.\left(n+1\right)^2}=\dfrac{1}{n\left(n+1\right)}\left[\dfrac{n}{n\left(n+1\right)}+\dfrac{n+1}{n\left(n+1\right)}\right]=\dfrac{1}{n\left(n+1\right)}\left(\dfrac{1}{n}+\dfrac{1}{n+1}\right)< \dfrac{1}{n\left(n+1\right)}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\Rightarrow A< 1-\dfrac{1}{10}< 1\) (đpcm)

13 tháng 1 2024

a=23