K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6

Dời dấu phẩy của số X sáng trái 2 hàng thì ta được số Y nên số Y nhỏ hơn số X 100 lần:

\(Y=\dfrac{X}{100}\)

Dời dấu phẩy của số X sang phải 2 hàng thì ta được số Z nên số Z lớn hơn số X 100 lần:

\(Z=100\times X\) 

Mà: \(X+Y+Z=2881,00722\)

\(X+\dfrac{X}{100}+100\times X=2881,00722\)

\(X\times\left(1+\dfrac{1}{100}+100\right)=2881,00722\)

\(X\times101,01=2881,00722\)

\(X=2881,00722:101,01\)

\(X=28,511\)

Vậy: ... 

19 tháng 6

                     Giải

Vì dời dấu phẩy của số X sang trái hai hàng thì được số Y nên số Y bằng:

           1 : 100 = \(\dfrac{1}{100}\) (số X)

Vì dời dấu phẩy của số X sang phải hai hàng thì ta được số Z nên số Z bằng:

         100 : 1  = \(\dfrac{100}{1}\)  (số X)

2881,00722 ứng với phân số là:

     1 + \(\dfrac{1}{100}\) + \(\dfrac{100}{1}\) =  \(\dfrac{10101}{100}\) (số X)

Số X là: 2881,00722: \(\dfrac{10101}{100}\) = 28,522 

Đáp số: 28,522

 

19 tháng 6

Hai bạn có tất cả số viên bi là:

15 + 23 = 38 (viên)

Trung bình cộng số viên bi của hai bạn là:

38 : 2 = 19 (viên)

 

19 tháng 6

Hùng có số viên bi là:

\(\left(15+23\right):2=19\) (viên)

ĐS: ... 

19 tháng 6

Số số hạng của dãy số là:

\(\left(198-2\right):2+1=99\) (số)

Tổng các số hạng trong dãy là:

\(\left(198+2\right)\times99:2=9900\)

Trung bình cộng của các số trong dãy là:

\(9900:99=100\)

Đáp số: 100

DT
19 tháng 6

Các số chẵn từ 2 đến 198 là: 2; 4; 6; 8; ....; 196; 198

Dãy trên là dãy cách đều 

Do đó TBC dãy trên là:

  (198 + 2) : 2 = 100

19 tháng 6

làm phần c thôi nhé

19 tháng 6

 Chọn hệ trục tọa độ Mxyz (M là gốc tọa độ) sao cho Mx trùng với tia MB, My trùng với tia MA và Mz cùng phương với BB' sao cho \(\overrightarrow{BB'}\) hướng theo chiều dương của Mz. 

 Gọi chiều cao lăng trụ là \(h>0\)

 Khi đó \(B\left(a;0;0\right)\)\(C'\left(-a;0;h\right)\)\(A'\left(0;a\sqrt{3};h\right)\)

 Ta có \(\overrightarrow{MC'}=\left(-a;0;h\right),\overrightarrow{BA'}=\left(-a;a\sqrt{3};h\right)\)

\(\Rightarrow\left[\overrightarrow{MC'},\overrightarrow{BA'}\right]=\left(-ah\sqrt{3};0;a^2\sqrt{3}\right)\)

\(\Rightarrow\left|\left[\overrightarrow{MC'},\overrightarrow{BA'}\right]\right|=\sqrt{\left(-ah\sqrt{3}\right)^2+\left(a^2\sqrt{3}\right)^2}=a\sqrt{3h^2+3a^2}\)

Lại có \(\overrightarrow{MB}=\left(a;0;0\right)\)

\(\Rightarrow\left[\overrightarrow{MC'},\overrightarrow{BA'}\right].\overrightarrow{MB}=-a^2h\sqrt{3}\)

\(\Rightarrow d\left(MC',BA'\right)=\dfrac{\left|\left[\overrightarrow{MC'},\overrightarrow{BA'}\right].\overrightarrow{MB}\right|}{\left|\left[\overrightarrow{MC'},\overrightarrow{BA'}\right]\right|}\) \(=\dfrac{a^2h\sqrt{3}}{a\sqrt{3a^2+3h^2}}=\dfrac{ah}{\sqrt{a^2+h^2}}\)

Theo đề bài, ta có: \(\dfrac{ah}{\sqrt{a^2+h^2}}=\dfrac{a}{2}\) 

\(\Leftrightarrow\dfrac{h}{\sqrt{a^2+h^2}}=\dfrac{1}{2}\)

\(\Leftrightarrow2h=\sqrt{a^2+h^2}\) 

\(\Leftrightarrow4h^2=a^2+h^2\)

\(\Leftrightarrow3h^2=a^2\)

\(\Leftrightarrow h=\dfrac{a}{\sqrt{3}}\)

\(\Rightarrow V=S_đ.h=\dfrac{\left(2a\right)^2\sqrt{3}}{4}.\dfrac{a}{\sqrt{3}}=a^3\)

Vậy thể tích lăng trụ bằng \(a^3\)

 

19 tháng 6

a)

\(\dfrac{x^4+12x^2-5x}{-x}=-\dfrac{x^4}{x}-\dfrac{12x^2}{x}+\dfrac{-5x}{-x}=-x^3-12x+5\)

b)

\(\dfrac{15x^5y^9-10x^3y^5+25x^4y^4}{5x^2y^2}=\dfrac{15x^5y^9}{5x^2y^2}-\dfrac{10x^3y^5}{5x^2y^2}+\dfrac{25x^4y^4}{5x^2y^2}=3x^3y^7-2xy^3+5x^2y^2\)

19 tháng 6

`a)`

`(x^4 + 12x^2 -5x):(-x)`

`=[x^4 : (-x)] + [12x^2 : (-x)] - [5x:(-x)]`

`=-x^3 - 12x + 5`

`b)`

`(15 x^5 y^9 - 10 x^3 y^5 + 25 x^4 y^4) : 5x^2 y^2`

`=(15 x^5 y^9 : 5 x^2 y^2) - (10 x^3 y^5 : 5x^2 y^2) + (25 x^4 y^4 : 5 x^2 y^2)`

`=3 x^3 y^7 - 2 x y^3 + 5 x^2 y^2`

19 tháng 6

Ta có:

\(92^3\equiv2\left(mod6\right)\)

\(\Rightarrow92^{30}\equiv\left(92^3\right)^{10}\left(mod6\right)\equiv2^{10}\left(mod6\right)\equiv4\left(mod6\right)\)

\(\Rightarrow92^{90}\equiv\left(92^{30}\right)^3\left(mod6\right)\equiv4^3\left(mod6\right)\equiv4\left(mod6\right)\)

\(\Rightarrow92^{93}\equiv92^{90}.92^3\left(mod6\right)\equiv4.2\left(mod6\right)\equiv2\left(mod6\right)\)

\(139^2\equiv1\left(mod6\right)\)

\(\Rightarrow139^{20}\equiv\left(139^2\right)^{10}\left(mod6\right)\equiv1^{10}\left(mod6\right)\equiv1\left(mod6\right)\)

\(\Rightarrow92^{93}+139^{20}+3\equiv2+1+3\left(mod6\right)\equiv6\left(mod6\right)\equiv0\left(mod6\right)\)

Vậy \(\left(92^{93}+139^{20}+3\right)⋮6\)

bạn ơi có mấy số

Xét ΔMNP có

A,D lần lượt là trung điểm của MN,MP

=>AD là đường trung bình của ΔMNP

=>AD//NP và \(AD=\dfrac{NP}{2}\)

Xét ΔHNP có

B,C lần lượt là trung điểm của HN,HP

=>BC là đường trung bình của ΔHNP

=>BC//NP và \(BC=\dfrac{NP}{2}\)

Ta có: AD//NP

BC//NP

Do đó: AD//BC

Ta có: \(AD=\dfrac{NP}{2}\)

\(BC=\dfrac{NP}{2}\)

Do đó: AD=BC

Xét tứ giác ABCD có

AD//BC

AD=BC

Do đó: ABCD là hình bình hành

giúp mình với